• Title/Summary/Keyword: Divergence-free

Search Result 97, Processing Time 0.024 seconds

Advanced Kalman filter - a survey (칼만필터의 최근 동향 및 발전)

  • 이장규;이연석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.464-469
    • /
    • 1987
  • The Kalman filter is an optimal linear estimator that has been an active research topic for the past three decades. The scheme has become the milestone of modern filtering, and it is applied to many areas including navigations and controls of free vehicle. The Kalman filter technique is matured. But some problems are still remained to be resolved. The prevention of divergence induced by digital implementation, nonoptimal application for nonlinear system, and application to non-Gaussian processes are some of the problems. This paper surveys the problems. The square root filtering is suggested to prevent the divergence. The extended Kalman filter is used for nonlinear systems. And, many other approaches to Kalman-like optimal estimators are also investigated.

  • PDF

COMPUTATIONS OF A NATURAL CONVECTION FLOW USING HERMITE FINITE ELEMENTS (Hermite 유한요소에 의한 자연대류 유동계산)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.220-225
    • /
    • 2007
  • This paper is a continuation of the recent development on the hermite-based divergence free basis function and deals with a non-isothermal fluid flow thru the buoyancy driven flow in a square cavity with temperature difference across the two sides. The basis functions for the velocities consist of the hermite function and its curl. However, the basis for the temperature are the hermite function and its gradienst. Hence, the number of degrees of freedom at a node becomes 6, which are the stream function, two velocities, the temperature and its x- and y-derivatives. Numerical results for the streamlines, the temperatures, the x-velocities and the y-velocities show good agreements with those of De vahl Davis[7].

  • PDF

NUMERICAL IMPLEMENTATION OF THE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATION

  • CHOI, YONGHO;JEONG, DARAE;LEE, SEUNGGYU;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.103-121
    • /
    • 2015
  • In this paper, we briefly review and describe a projection algorithm for numerically computing the two-dimensional time-dependent incompressible Navier-Stokes equation. The projection method, which was originally introduced by Alexandre Chorin [A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (1968), pp. 745-762], is an effective numerical method for solving time-dependent incompressible fluid flow problems. The key advantage of the projection method is that we do not compute the momentum and the continuity equations at the same time, which is computationally difficult and costly. In the projection method, we compute an intermediate velocity vector field that is then projected onto divergence-free fields to recover the divergence-free velocity. Numerical solutions for flows inside a driven cavity are presented. We also provide the source code for the programs so that interested readers can modify the programs and adapt them for their own purposes.

CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITION

  • Min, Chohong;Yoon, Gangjoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition. Using the $L^2$-orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be $O(h^{1.5})$ with step size h. In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.

Stability Analysis of Beck's Column (Beck 기둥의 안정성 해석)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kang, Hee-Jong;Kim, Gwon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.903-906
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the uniform Beck's columns with a tip spring, carrying a tip mass. The ordinary differential equation governing free vibrations of such Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the mass moment of inertia and spring parameter.

  • PDF

Estimation of Allowable Path-deviation Time in Free-space Optical Communication Links Using Various Aircraft Trajectories

  • Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.210-214
    • /
    • 2019
  • The allowable path-deviation time of aircraft in a free-space optical communication system has been estimated from various trajectories, using different values of aircraft speeds and turn rates. We assumed the existence of a link between the aircraft and a ground base station. First, the transmitter beam's divergence angle was calculated through two different approaches, one based on a simple optical-link equation, and the other based on an attenuation coefficient. From the calculations, the discrepancy between the two approaches was negligible when the link distance was approximately 110 km, and was under 5% when the link distance ranged from 80 to 140 km. Subsequently, the allowable path-deviation time of the aircraft within the tracking-error tolerance of the system was estimated, using different aircraft speeds, turn rates, and link distances. The results indicated that the allowable path-deviation time was primarily determined by the aircraft's speed and turn rate. For example, the allowable path-deviation time was estimated to be ~3.5 s for an aircraft speed of 166.68 km/h, a turn rate of $90^{\circ}/min$, and a link distance of 100 km. Furthermore, for a constant aircraft speed and turn rate, the path-deviation time was observed to be almost unchanged when the link distance ranged from 80 to 140 km.

Investigation on Boundary Conditions of Fractional-Step Methods: Compatibility, Stability and Accuracy (분할단계법의 경계조건에 관한 연구: 적합성, 안정성 및 정확도)

  • Kim, Young-Bae;Lee, Moon-J.;Oh, Byung-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.410-415
    • /
    • 2001
  • An analytical and numerical examination of second-order fractional-step methods and boundary condition for the incompressible Navier-Stokes equations is presented. In this study, the compatibility condition for pressure Poisson equation and its boundary conditions, stability, and numerical accuracy of canonical fractional-step methods has been investigated. It has been found that satisfaction of compatibility condition depends on tentative velocity and pressure boundary condition, and that the compatible boundary conditions for type D method and approximately compatible boundary conditions for type P method are proper for divergence-free velocity for type D and approximately divergence-free for type P method. Instability of canonical fractional-step methods is induced by approximation of implicit viscous term with explicit terms, and the stability criteria have been founded with simple model problems and numerical experiments of cavity flow and Taylor vortex flow. The numerical accuracy of canonical fractional-step methods with its consistent boundary conditions shows second-order accuracy except $D_{MM}$ condition, which make approximately first-order accuracy due to weak coupling of boundary conditions.

  • PDF

Computations of Natural Convection Flow Using Hermite Stream Function Method (Hermite 유동함수법에 의한 자연대류 유동 계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 2009
  • This paper is a continuation of the recent development on Hermite-based divergence free element method and deals with a non-isothermal fluid flow thru the buoyancy driven flow in a square enclosure with temperature difference across the two sides. The basis functions for the velocity field consist of the Hermite function and its curl while the basis functions for the temperature field consists of the Hermite function and its gradients. Hence, the number of degrees of freedom at a node becomes 6, which are the stream function, two velocities, the temperature and its x and y derivatives. This paper presents numerical results for Ra = 105, and compares with those from a stabilized finite element method developed by Illinca et al. (2000). The comparison has been done on 32 by 32 uniform elements and the degree of approximation of elements used for the stabilized finite element are linear (Deg. 1) and quadratic (Deg. 2). The numerical results from both methods show well agreements with those of De vahl Davi (1983).

Experimental Investigation on Key Parameters in Air-powered Needle-free Injection System for Skin Treatment (피부 치료를 위한 공압식 무침 주사 시스템의 주요 인자에 관한 실험적 연구)

  • Kim, Jung Kyung;Mohizin, Abdul;Lee, Seung Ku
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • A needle-free injector is one of the new non-invasive players in impregnating the biological barriers. It is considered as the next phase in drug delivery and therapeutic applications. One of the major fields of application is in skin remodeling procedures. Although many studies were carried out in understanding the principle in the needle-free injection procedure, fewer studies were done with the aim of therapeutic applications. In the present study, we tried to identify key parameters that affect the jet divergence and peak stagnation pressure on the skin surface in a conventional needle-free injector for skin treatment. A summary of the working principle and effect of the key parameters are presented.

Stability of Stepped Columns Subjected to Nonconservative Force (비보존력이 작용하는 불연속 변단면 기둥의 안정성)

  • Oh, Sang-Jin;Mo, Jeong-Man;Lee, Jae-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.801-804
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of stepped cantilever columns with a tip mass of rotatory inertia and a translational spring at one end. The column model is based on the Bernoulli-Euler theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibration of columns with stepwise variable cross-section and subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. The frequency and critical divergence/flutter load for the stepped column with a single step are presented as functions of various non-dimensional system parameters: the segmental length parameter, the section ratio, the subtangential parameter, the mass, the moment of inertia of the mass, and the spring parameter.

  • PDF