• 제목/요약/키워드: Distribution reliability

검색결과 2,839건 처리시간 0.026초

A Note on Determining Confidence Level in Reliability Test for Assuring Bx-Life

  • Lim, Jae-Hak;kwon, Young-Il
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권4호
    • /
    • pp.262-266
    • /
    • 2014
  • In this paper, we consider the problem of determining the confidence level in zero-failure reliability sampling plans when the life distribution is Weibull distribution with a shape parameter m and a scale parameter ${\eta}$. We introduce zero-failure reliability sampling plans for Weibull distribution and investigate some characteristics of zero-failure reliability sampling plans. Finally, We propose new guideline for determining the confidence level in zero-failure reliability sampling plans for assuring $B_x-life$.

Parameters Estimators for the Generalized Exponential Distribution

  • Abuammoh, A.;Sarhan, A.M.
    • International Journal of Reliability and Applications
    • /
    • 제8권1호
    • /
    • pp.17-25
    • /
    • 2007
  • Maximum likelihood method is utilized to estimate the two parameters of generalized exponential distribution based on grouped and censored data. This method does not give closed form for the estimates, thus numerical procedure is used. Reliability measures for the generalized exponential distribution are calculated. Testing the goodness of fit for the exponential distribution against the generalized exponential distribution is discussed. Relevant reliability measures of the generalized exponential distributions are also evaluated. A set of real data is employed to illustrate the results given in this paper.

  • PDF

유지보수 영향을 고려한 배전계통 신뢰도 평가 (Reliability Evaluation of Power Distribution System Considering Maintenance Effects)

  • 문종필;손진근
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.154-157
    • /
    • 2010
  • In this paper, the Time-varying Failure Rates(TFR) of power distribution system components are extracted from the recorded failure data of KEPCO(Korea Electric Power Corporation) and the reliability of power distribution system is evaluated using Mean Failure Rate(MFR) and TFR. The TFR is approximated to bathtub curve using the exponential and Weibull distribution function. In addition, Kaplan-Meier estimation is applied to TFR extraction because of incomplete failure data of KEPCO. Also the reliability of the real power distribution system of Korea is evaluated using the MFR and TFR extracted from real failure data, respectively and the results of each case are compared with each other. As a result, it is proved that the reliability evaluation using the TFR is more realistic than MFR. In addition, it is presented that the application method at power distribution system maintenance and repair using the result of TFR.

상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석 (Reliability Analysis for Probability of Pipe Breakage in Water Distribution System)

  • 권혁재;이철응
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.

파레토 및 어랑 형상모수에 의존한 수명분포를 따르는 소프트웨어 신뢰성 모형에 대한 신뢰도 특성요인 비교 연구 (A Comparison of Reliability Factors of Software Reliability Model Following Lifetime Distribution Dependent on Pareto and Erlang Shape Parameters)

  • 김희철;문송철
    • Journal of Information Technology Applications and Management
    • /
    • 제24권2호
    • /
    • pp.71-80
    • /
    • 2017
  • Software reliability is one of the most elementary and important problems in software development In order to find the software failure occurrence, the instantaneous failure rate function in the Poisson process can have a constant, incremental or decreasing tendency independently of the failure time. In this study, we compared the reliability performance of the software reliability model using the parameters of Pareto life distribution with the intensity decreasing pattern and the shape parameter of Erlang life distribution with the intensity increasing and decreasing pattern in the software product testing. In order to identify the software failure environment, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, we compare and evaluate software reliability by applying software failure time data. The reliability of the Erlang and Pareto life models is shown to be higher than that of the Pareto lifetime distribution model when the shape parameter is higher and the Erlang model is more reliable when the shape parameter is higher. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing basic knowledge using software failure analysis.

Reliability in Two Independent Uniform and Power Function-Half Normal Distribution

  • Woo, Jung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제15권3호
    • /
    • pp.325-332
    • /
    • 2008
  • We consider estimation of reliability P(Y < X) and distribution of the ratio when X and Y are independent uniform random variable and power function random variable, respectively and also consider the estimation problem when X and Y are independent uniform random variable and a half-normal random variable, respectively.

전압 크기의 품질 및 전력수요 변동모델을 고려한 배전계통의 통합적인 신뢰도 및 비용 평가 (Unified Reliability and Its Cost Evaluation in Power Distribution Systems Considering the Voltage Magnitude Quality and Demand Varying Load Model)

  • Yun, Sang-Yun
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권12호
    • /
    • pp.705-712
    • /
    • 2003
  • In this paper, we propose new unified methodologies of reliability and its cost evaluation in power distribution systems. The unified method means that the proposed reliability approaches consider both conventional evaluation factor, i.e. sustained interruptions and additional ones, i.e. momentary interruptions and voltage sags. Because the three voltage quality phenomena generally originate from the outages on distribution systems, the basic and additional reliability indices are summarized considering the fault clearing mechanism. The proposed unified method is divided into the reliability evaluation for calculating the reliability indices and reliability cost evaluation for assessing the damage of customer. The analytic and probabilistic methodologies are presented for each unified reliability and its cost evaluation. The time sequential Monte Carlo technique is used for the probabilistic method. The proposed DVL(Demand Varying Load) model is added to the reliability cost evaluation substituting the average load model. The proposed methods are tested using the modified RBTS(Roy Billinton Test System) form and historical reliability data of KEPCO(Korea Electric Power Corporation) system. The daily load profile of the each customer type in domestic are gathered for the DVL model. Through the case studies, it is verified that the proposed methods can be effectively applied to the distribution systems for more detail reliability assessment than conventional approaches.

ON THE BAYES ESTIMATOR OF PARAMETER AND RELIABILITY FUNCTION OF THE ZERO-TRUNCATED POISSON DISTRIBUTION

  • Hassan, Anwar;Ahmad, Peer Bilal;Bhatti, M. Ishaq
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권2호
    • /
    • pp.97-108
    • /
    • 2008
  • In this paper Bayes estimator of the parameter and reliability function of the zero-truncated Poisson distribution are obtained. Furthermore, recurrence relations for the estimator of the parameter are also derived. Monte Carlo simulation technique has been made for comparing the Bayes estimator and reliability function with the corresponding maximum likelihood estimator (MLE) of zero-truncated Poisson distribution.

  • PDF

지중배전계통 공급방식의 공급신뢰도 평가 기법 (A Study on the Reliability Evaluation of Underground Distribution System)

  • 최상봉;김대경;정성환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권7호
    • /
    • pp.309-317
    • /
    • 2001
  • The objective of this study is to evaluate properly reliability of underground distribution system taking into account domestic circumstance. Interruption time and number of interruption customer by distribution system based on actual condition in domestic utility are considered as important index to estimate reliability of underground distribution system. This paper presents algorithm to evaluate reliability of underground distribution system by using a model system as new urban area. Evaluation results which is established are shown in detail according to whether automatic system is introduced or not.

  • PDF

Three-Parameter Gamma Distribution and Its Significance in Structural Reliability

  • Zhao, Yan-Gang;Alfredo H-S. Ang
    • Computational Structural Engineering : An International Journal
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 2002
  • Information on the distribution of the basic random variables is essential for the accurate evaluation of structural reliability. The usual method for determining the distribution is to fit a candidate distribution to the histogram of available statistical data of the variable and perform appropriate goodness-of-fit tests. Generally, such candidate distributions would have two parameters that may be evaluated from the mean value and standard deviation of the statistical data. In the present paper, a-parameter Gamma distribution, whose parameters can be directly defined in terms of the mean value, standard deviation and skewness of available data, is suggested. The flexibility and advantages of the distribution in fitting statistical data and its significance in structural reliability evaluation are identified and discussed. Numerical examples are presented to demonstrate these advantages.

  • PDF