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ABSTRACT: In this paper Bayes estimator of the parameter and reliability function of the zero-
truncated Poisson distribution are obtained. Furthermore, recurrence relations for the estimator of the 
parameter are also derived. Monte Carlo simulation technique has been made for comparing the 
Bayes estimator and reliability function with the corresponding maximum likelihood estimator 
(MLE) of zero-truncated Poisson distribution. 
 

 

1. INTRODUCTION 
 

The Poisson distribution is defined by 

!x

e
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 ; x =   0,1,2,… (1) 

The distribution (1) has been obtained by S.D Poisson [1] as a limiting case of the 
Binomial distribution, for some reasons Newbold [2], Jensen [3] and David [4] preferred to 
give credit to De Moivre [5] rather than to S.D. Poisson for discovering of Poisson 
distribution. The distribution is so important among the discrete distributions that even 
Fisher, once remarked ‘Among discontinuous distributions’, the Poisson series is of the 
first importance. Johnson, Kotz and Kemp [6] have discussed the genesis of Poisson 
distribution in detail. Ahmad and Roohi [7] have discussed the characterization of the 
Poisson distribution. Roohi and Ahmad [8] studied the inverse ascending factorial moments 
and estimation of the parameter of hyper-Poisson distribution using negative moments. The   
Poisson distribution has been described as playing a “similar role with respect to discrete 
distribution to that of the normal for absolutely continuous distribution”. 

The commonest form of truncation is the omission of the zero class, because the 
observational apparatus becomes active only when at least one event occurs. The 
distribution (1) can be truncated at x = 0 and is defined 
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;   x=1,2,… (2) 
This is usually called the positive Poisson distribution. Cohen [9] called it a conditional 

Poisson distribution. The truncated distribution (2) has been first considered by David and 
Johnson [10] . In particular, they derived the maximum likelihood estimate (MLE) of  and 
its asymptotic variance, and discussed the efficiency of the estimation by moments. 
Plackett [11] provided a similar estimate of  for distribution (2), to show that it is highly 
efficient, and to estimate its sampling variance. Murakami [12] also discussed the 
maximum likelihood estimators based on censored samples from truncated Poisson 
distributions. Tate and Goen [13] obtained minimum variance unbiased estimation. Cohen 
([14] [15]) provided the estimation of the model (2) from the sample that are truncated on 
the right. A brief list of authors and their works can be seen in Johnson and Kotz [16], 
Johnson, Kotz and Kemp [6] and Consul [17]. 

Bayesian estimation is a likelihood based style of inference that incorporates prior 
information on the unknown variables. ML estimates are equivalent to the nodes of the 
Bayesian posterior distribution, when the prior distribution for the unknown variables is 
flat. However, the goal of a Bayesian analysis is generally not just a point estimate like the 
posterior mode (mean or median), but a representation of the entire distribution for the 
unknown parameter(s) (Gelman, Carlin, Stern, Rubin, [18] 1995, page 301). 

Kyriakoussis and Papadopoulos [19] (1993) derived the Bayes estimators of the 
probability of success and reliability function of the zero-truncated binomial and negative 
binomial distributions.  In this paper we have made an attempt to obtain Bayes estimator 
of the parameter and reliability function of the zero-truncated Poisson distribution. 
Furthermore, recurrence relations for the estimator of the parameter are also derived. 
Monte Carlo simulation technique has been made for comparing the Bayes estimator and 
reliability function with the corresponding maximum likelihood estimator (MLE) of zero-
truncated Poisson distribution. 
 

2. BAYESIAN ESTIMATOR OF PARAMETER OF ZERO-TRUNCATED 
POISSON DISTRIBUTION 

 
Let x1, x2, …, xn be a random sample from (2). The likelihood function is given by 




 


n

1i
i

nxn

!x

)e1(e
L

i
nyn )e1(e c    (3)



ON THE BAYES ESTIMATOR OF PARAMETER AND RELIABILITY FUNCTION OF  
THE ZERO-TRUNCATED POISSON DISTRIBUTION 

 

 

99

where   and  ixy  



n

1i
i!xc

Regarding the parameter  in (2), as a random variable, a natural conjugate of its prior 
distribution is the gamma distribution, given as 
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 ,  > 0,   > 0 (4) 

Using Bayes theorem, the posterior distribution of  from (3) and (4) can be shown to be 
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Under squared error loss function, the Bayes estimator of  is the posterior mean 
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Using identity  
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,      |z| < 1  
and the relation 
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and similarly, 
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Substituting (8) and (9) into (6) and using relations (b+1) = bb and 
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we get 
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or 
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 (12) 

y = n, n + 1…,            n = 1, 2, …  
where 
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After simplification (12) becomes 
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y = n, n + 1, …,       n = 1, 2,… 
where 
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 (16) 
 

3. RECURRENCE RELATIONS 
 

In order to obtain a recurrence relation for p*(y, n), first we need recurrence relations for the 
numbers M(y,n) and B(y,n), which are obtained by following two lemmas: 

 
LEMMA1: The numbers M(y,n), satisfy the recurrence relations: 
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 (17) 
y = n, n + 1, n + 2, … , n = 1, 2, … 
with initial condition 

M(y,1) =   1y
1k k
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,  y = 1,2,3… (18) 
 
Proof: From the relation (13), we have 
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Using the relation (10) then (3.3) becomes 

   








 




















 


nk
1y

1nk
1y k

1

1n

1k
)n(

k

1

n   

1k
n)n,1y(M

  
From (13) and (14) we have 

M (y – 1, n) = n M(y, n + 1) + (n + ) M (y,n) (20) 
from which , we have (17).Also from(13) for n=1 we have the relation (18) 
 
Remark 1: Since,  is a positive integer and  > 0, from (13) we have 
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We also have 
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, 
consequently the series M(y, 1) exists and from (17) by mathematical induction we 

conclude that the series M( y, n) also exists. 
 
Remark 2: Combining the relations (12), (13) and (14) we get that 
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LEMMA 2: The numbers B(y, n), satisfy the recurrence relations: 

        
   

  
 1n

1n

n,yB1n

n,1yBnn,ynB
1n,yB










 (23) 
n = 1, 2, …,   y = n, n + 1, … 
with initial conditions 
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Proof: From the relation (14) and the recurrence relation (17), we get 
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We also have, 
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From (16) and (20) we have 
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or 

          n,1yBnny,B nn,yM1n,1yM   (27) 
Substituting (26) into (25) we obtain (23).Using the relation (22) for n=1 we easily obtain 

the initial conditions (23). 
 
Theorem 1: The Bayes estimator of the parameter  satisfies the recurrence relation: 
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y= n,n+1,….. , n=1,2,3…. 
with initial conditions 

    
 


1,1yM

1,yMy
1,yp*





 (29) 

Proof: From the relation (15) we have 
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Substituting (23) into (30) and using (15) we obtain (28), after some algebraic 
manipulations. From the relation (22) for n = 1 we easily get (29). 

 
4. BAYES ESTIMATOR OF THE RELIABILITY FUNCTION OF ZERO-

TRUNCATED POISSON DISTRIBUTION 
 

The Bayes estimator R*(t), for R(t) = P(X > t), where the random variable X has the 
distribution (2), is given by 

 n21
* x,...,x,x)t(RE)t(R     
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where 
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Making similar computations, as for p*(y, n) we get 
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Using the identity 
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Similarly, 
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Using (35) and (34) in (33), we get 
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Using the relation (10), we get 

 
 

 
 
 

 









































 





1]t[x

nk
1y

1nk
1xy

*

k

k

1n

1k
k

k

n   

1k

y!x

xy
)t(R

  



ON THE BAYES ESTIMATOR OF PARAMETER AND RELIABILITY FUNCTION OF  105
THE ZERO-TRUNCATED POISSON DISTRIBUTION 

 

 

 

 
 

 
 

 

 
 


 

 

















































 








 



















1]t[x

1nk nk
1y

2nk 1nk
1xy

1n

1k
n

k

1

n   

1k
n

n   

1k
1n

k

1

1n

1k
1n

y!x

xy

                                                    

 

  
















1y

1xy

k

1
k

1

 

 
 

       
     



















1]t[x 1n,ynMn,yMn

1n,xyM1n2n,xyM1n

y

xy

(37) 
Where 
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5. COMPUTER SIMULATION AND CONCLUSION 
 

In order to compare the estimators, Monte Carlo Simulations were performed on 1000 
samples for each simulation. The following steps summarize the simulation, 

1) A value is generated from a gamma distribution with specified 

parameters and . 
2) Based on the realization from the gamma distribution a sample of size n=8 or 30 is 

generated from the zero-truncated Poisson distribution. 
3) The estimates of the parameter and reliability function are computed from the 

generated sample, and the estimates and their squared error losses were stored. 
4) Steps 1-3 were repeated 1000 times. 
5) Average values and root mean square errors (RMSE’s) of the estimates are 

computed over the 1000 samples. 
 Tables 1-4 show some of the results. In comparing the estimators the root mean square error 
criterion will be used, namely the estimator with the smallest RMSE is the best estimator. The 
reliability function was evaluated arbitrarily at times 1, 2 and 3. Two sample sizes of n=8, 30 
were utilized in the simulation. 
 
TABLE 1. Average values and RMSE’s for the estimators of the zero- truncated Poisson. 
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Gamma prior with 1  and 1 , Sample Size n=8 
Parameter             
True Value             

Bayes 
Ave.        RMSE 

               
MLE 
Ave.             RMSE 

RMSE 
ratio 
MLE/Bayes 

4.0832 4.0776    3.6190 4.0784           3.6200 1.0003 

Reliability 

Tim
e 
 

Exact 
Value 
 

Bayes 
Ave.      RMSE 

MLE 
Ave.           RSME 

RMSE 
ratio 

MLE/Bay
es 

1 
2 
3 

4.4816 
4.3879 
4.2785 

4.4724    3.6230 
4.3769   3.6392 
4.2681  3.6523 

4.4695         3.6264 
4.3779         3.6408 
4.2699         3.6542 

1.0009 
1.0004 
1.0005 

 
TABLE 2. Average values and RMSE’s for the estimators of the zero- truncated Poisson. 

Gamma prior with 2  and 5 , Sample Size n=8 
Parameter 
True  Value Bayes 

Ave.     RMSE 
              MLE 
Ave.        RMSE 

RMSE ratio 
MLE/Bay
es 

2.1904 2.1912     1.9665 2.1792     1.9708 1.0022 

Reliability 

Time 
 

Exact 
Value 

Bayes 
Ave.       RMSE 

MLE 
Ave.             RSME 

RMSE ratio 
MLE/Bayes 

1 
2 
3 

2.7034 
2.4588 
2.2387 

2.6915    2.0026 
2.4526    2.0305 
2.2435    2.0244 

2.6771     2.0142 
2.4403     2.0396 
2.2321     2.0324 

1.0058 
1.0045 
1.0040 

 
TABLE 3. Average values and RMSE’s for the estimators of the zero- truncated Poisson. 

Gamma prior with 1  and 1 , Sample Size n=30 
Parameter 
True  Value Bayes 

Ave.       RMSE 
           MLE 
Ave.         RMSE 

RMSE 
ratioMLE/
Bayes 

15.1380 15.1020    14.6255 15.1020      14.6256 1.0000 

Reliability 

Time 
 

Exact 
Value 
 

Bayes 
Ave.      RMSE 

MLE 
Ave.         RSME 

RMSE 
ratioMLE
/Bayes 
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1 
2 
3 

15.5245 
15.4269 
15.3205 

15.4889    14.6310 
15.3892    14.6370 
15.2819    14.6420 

15.4882       14.6311 
15.3890       14.6372 
15.2821       14.6422 

1.0000 
1.0000 
1.0000 

 
TABLE 4. Average values and RMSE’s for the estimators of the zero- truncated 

Poisson. Gamma prior with 2  and 5 , Sample Size n=30 
Parameter 
True   Value Bayes 

Ave.       RMSE
MLE 
Ave.      RMSE

RMSE ratio 
MLE/Bayes 

8.5200 8.4870     8.2306 8.4840    8.2311 1.0001 

Reliability 

Time 
 

Exact 
Value 
 

Bayes 
Ave.       RMSE

MLE 
Ave.      RSME

RMSE ratio 
MLE/Bayes 

1 
2 
3 

9.0363 
8.8006 
8.5798 

8.9992     8.2502
8.7641     8.2642
8.5466     8.2619

8.9961    8.2520
8.7617    8.2655
8.5438    8.2630

1.0002 
1.0002 
1.0001 

 
In comparing the estimators, the Bayes ones have the smallest RMSE and are better. This is 

to be expected since the Bayes estimators take advantage of the known prior parameters  and 
. By examining the RMSE ratios we can conclude that the estimates are sensitive to the 
choice of prior parameters and to sample size.  
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