• Title/Summary/Keyword: Distribution pipe

Search Result 620, Processing Time 0.021 seconds

A Study about Detection of Defects in the Nuclear Piping Loop System Using Cooling Lock-in Infrared Thermography (원전 배관 루프시스템의 냉각 위상잠금 적외선열화상을 이용한 결함 검출에 관한 연구)

  • Kim, Sang-Chae;Kang, Sung-Hoon;Yun, Na-Yeon;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.321-331
    • /
    • 2015
  • A study on the application of cooling defect detection was performed on the basis of a preceding study on the heated defect detection in nuclear piping loop system, using lock-in infrared thermography. A loop system with piping defects was made by varying the wall-thinning length, the circumference orientation angle, and the wall-thinning depth. The test was performed using an IR camera and a cooling device. Distance between the cooling device and the target loop system was fixed at 2 m. For analyzing experimental results, the temperature distribution data for cooling, and phase data were obtained. Through the analysis of this data, the defect length was measured. The reliability of the measurements for cooling defect conditions was shown to be higher in the lock-in infrared thermography data than the infrared thermography data.

Design and Development of Thermoacoustic Rdfrierator : I. Acoustic Analysis of Resonator and Prediction of Energy Conversion (열음향 냉동기의 설계 및 개발 : I. 내부공간의 음향해석 및 에너지 변환 예측)

  • Park, Chul-Min;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.44-52
    • /
    • 1996
  • Acoustical characteristics of internal pipe structures and a loudspeaker of the thermoacoustic refrigerator are analyzed by using the transfer matrix method. The resonator system is dismantled into verious basic acoustic elements, and then linearized transfer matrices are serially combined with the dynamical system of linearized loudspeaker model, that the total system of thermoacoustic refrigerator can be analyzed in terms of frequency characteristics and acoustic field shape. Additionally, by using equations for energy flow through the capillary stack, the temperature distribution over the stack is numerically estimated. After expressing the acoustic work flow, thermoacoustic flow, and energy loss per unit length in a single capillary duct by using the transverse functional variations, overall energy flow rate and energy balance are obtained for the whole capillary stack. The final expression for energy flow through the stack is numerically evaluated by varying physical parameters obtained from the sound field analysis. After confirming good agreements between predicted and experimental results for the interior sound field of a refrigerator model, the thermoacoustic characteristics of Hofler's apparatus is analyzed by the proposed method and it is observed that the results agree well with Hofler's experimental results.

  • PDF

Removal of discoloration materials by water mains cleaning on water distribution pipes (관 세척에 따른 색도성 물질의 제거 효과)

  • Lee, Ho-Min;Choi, Tae-Ho;Yun, Hyun-Woo;Kim, Dong-Hong;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.267-276
    • /
    • 2020
  • In this study, air scouring cleaning was selected and applied among 5 small blocks (S1~S5) in domestic S cities to analyze the cleaning effect of particles causing discoloration. In order to identify the cleaning effect, 10 locations were selected as water quality investigation point, such as the stagnant or water mains ends. Removal of solids, variation of particle components, weight and concentration were analyzed. And the level of the cleanness of the surface inside water mains using endoscope was investigated. As a result of analysis, the solids discharged after cleaning were mainly sand and gravel, pieces related to pipe materials, and corrosion products. As a result of analyzing the concentrated particles of the filter before and after cleaning, it was found that the change in discoloration on the filter was large. In addition, as a result of comparing the weight and the concentration of the particles, it was found that the particles causing discoloration were significantly removed after cleaning. From the results of the endoscopy, it was confirmed that most of the precipitated and accumulated dark yellow discoloration matters inside water mains were removed through cleaning. Therefore, it seems that the particles causing discoloration in water decreased after cleaning. Therefore, it is expected that, if properly cleaning was applied, matters that cause discoloration can be removed from the water mains, and customer's complaints can also be reduced through water quality improvement.

The Resistance Characteristics and Reliability Evaluation of an Insulation Ring Type of Corrugated Stainless Steel Tubing(CSST) (절연링형 금속플렉시블호스(CSST)의 저항 특성 및 신뢰성 평가)

  • Lee, Jang-Woo;Kim, Jeom-Sik;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.25-31
    • /
    • 2016
  • This paper has analyzed the structure, applicable regulations and the resistance characteristics of insulation ring type of CSST (Corrugated Stainless Steel Tubing for Gas). With the flammability test conducted in accordance with KS C IEC 60811-1-1, the evaluation of insulation resistance, temperature characteristics, and reliability has been conducted. An insulation ring type CSST consists of protective coating, tube, nut, insulation ring, packing, socket, and ball valve. Connecting an insulation ring type CSST to gas tubings for gas appliance is not permitted, moreover, the product shall be installed inside a sleeve pipe in case of buried installation such as the ceiling. Damages on protective coating and tube were detected when fire was applied to the test sample with a portable torch for 60 seconds. The insulation resistance of a normal product was $49.59M{\Omega}$, while that of the product completed the flammability test reduced to $9.21M{\Omega}$. The mean insulation resistance within the confidence Interval of 95% using the mini tap program 17 was $49.59M{\Omega}$ and the mean insulation resistance within the confidence interval reduced to $9.21M{\Omega}$. In the normal distribution analysis of 95% confidence interval, the value-P of the normal product was stable at 0.075 and AD(Anderson-Darling) statistic value was turned out to be 0.063, which is very normal, and the standard deviation was analyzed as 0.2586. The value P of the product completed the flammability test resulted in 0.005, the AD was 1.355 and the standard deviation reduced to 0.07908.

A Study on the Development of Superheater Using High-Frequency Resonant Inverter for Induction Heating (유도가열용 고주파 공진형 인버터를 이용한 과열증기 발생장치 개발에 관한 연구)

  • 신대철;권혁민;김기환;김용주
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2004
  • This paper is described the indirect induction heated boiler system and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20〔KHz〕 to 50〔KHz〕. A specially designed Induction heater, which is composed of laminated stainless assembly with many tiny holes and interconnected spot welding points between stainless plates, is inserted into the ceramic type vessel with external working coil. This working coil is connected to the resonant inverter. In the induction heater, it's primary heating section creates low-pressure saturated steam and secondary heating section generates heat distribution evaporating fluid from the turbulence fluid which is flowing through the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from the practical point of view.

Effect and Issues on the Water Supply Network Management System in Kwangju (광주시 상수도관망관리시스템의 효과 및 문제점에 관한 연구)

  • 오창수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.103-110
    • /
    • 1998
  • This study deals with the effective management system on the underground facilities by Geographic In-formation System (GIS). For this purpose,"Management System on the Water Supply Network by GIS in Kwangju" was analylized. Following results were obtained in this study. This system could be practically used for the inquiry of water supply and distribution pipes, check valves, pipe equipments and parcel identification numbers. Inquiry of addresses using the parcel identification numbers were effective for the database management system of the water supply facilities. The poits at issue for the performance of this study were the security and education of experts, the security of revenue source, the discord between GIS companies concerned. Establishments of GIS software technologies and database systems, and the settlement between GIS companies were required for the solution of these poits. Development of computer management systems on the water sup-ply network by GIS enabled the replacement of outworn pipes and the leakage inquiry techniques in pipes. in pipes.

  • PDF

Full Scale Tests of Concrete Filled Steel Tube Column using High Fluidity Concrete (고유동 콘크리트를 이용한 콘크리트 충전강관 기둥의 실물대 시공실험)

  • Kim Ook-Jong;Lee Do-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.222-227
    • /
    • 2001
  • Full scale construction tests of CFT(concrete filled steel tube) column to solve construction problem and to confirm quality were performed in apartment site. To improve construction efficiency, the tests has been accomplished two stages after the tests for material mixing design had been completed. In the first stage, the experimental variables were the placing methods, existence of guiding pipe, placing velocity and drop height and the height of specimen were $3.6{\cal}m$. In the second stage, Filling steel tube of 9.6m height with concrete was performed by two ways, that is, the pump-up method and the dropping method. The filled condition of the concrete and concrete strength distribution according to the column height were checked and the quality of the CFT column was confirmed.

  • PDF

Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process (진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구)

  • Park, Hyungkwon;Kwon, Juhyuk;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

The Behavior of Corrugated Steel Pipes on Underground Structures According to the Depth of Cover (파형 강관 지중구조물의 토피고에 따른 거동특성)

  • Yook, Jeong-Hoon;Kim, Nag-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • The analysis of corrugated steel pipes is depending on a second dimension frame analysis or compressed ring model. This is the analysis not to consider the behavior of soil-structure interaction. The behavior of load resistance system is varied according to the depth of cover and the spacing of corrugated steel pipes structure. Therefore, the behavior characteristic of corrugated steel pipes was confirmed through finite element analysis to consider the activity of soil-structure interaction. If soil cover is filled up to the more of optimal depth, behavior of corrugated steel pipes are similar to those of ductile steel pipes according to the earth pressure distribution and effects of traffic loads are decreased. But, If soil cover is filled up to the less of optimal depth, corrugated steel pipes can't behave completely as ductile steel pipes because the passive earth pressure acting on side of corrugated steel pipes is decreased according to the decrement of vertical earth pressure, and the traffic loads influence on the section forces is increased, so that the traffic loads dominated the behavior of corrugated steel pipes.

  • PDF

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF