• 제목/요약/키워드: Distribution of particle size

검색결과 1,924건 처리시간 0.031초

드론을 이용한 안면도 상공 대기경계층내의 미세먼지 연직분포 및 Flux 측정 (Vertical Aerosol Distribution and Flux Measurement in the Planetary Boundary Layer Using Drone)

  • 김희상;박용희;김우영;은희람;안강호
    • 한국입자에어로졸학회지
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 2018
  • Vertical particle size distribution, total particle concentration, wind velocity, temperature and humidity measurement was performed with a drone. The drone was equipped with a wind sensor, house-made optical particle count(Hy-OPC), condensation particle counter(Hy-CPC), GPS, Temperature, Relative Humidity, Pressure and communication system. Base on the wind velocity and the particle size vertical distribution measurement with drone, the particle mass flux was calculated. The vertical particle distribution showed that the particle number concentration was very strongly correlated with the relative humidity.

입도분포가 액상화 저항강도에 미치는 영향에 관한 실험적 연구 (Experimental Study on the Effect of Particle Size Distribution of Soil to the Liquefaction Resistance Strength)

  • 최문규;서경범;박성용;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1126-1133
    • /
    • 2005
  • The effects of mean particle size and uniformity coefficient of dredged soils to the liquefaction resistance strength and dynamic characteristics are experimentally studied in this paper. Representative 4 mean particle sizes and 3 uniformity coefficients were selected and 12 representative particle size distribution curves which have different mean particle sizes and uniformity coefficients, were artificially manufactured using the real dredged river soil. Cyclic triaxial tests and torsional shear tests were carried out to analyze the effect of mean particle size and uniformity coefficient to the liquefaction resistance strength and dynamic characteristics of soils.

  • PDF

분무열분해공정에 의한 인듐 산화물 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process)

  • 유재근
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.493-502
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to $1000^{\circ}C$, the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.

[Retraction]Characterization of carbon black nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Lee, Seungho;Kim, Woonjung
    • 분석과학
    • /
    • 제32권3호
    • /
    • pp.77-87
    • /
    • 2019
  • High viscosity carbon black dispersions are used in various industrial fields such as color cosmetics, rubber, tire, plastic and color filter ink. However, carbon black particles are unstable to heat due to inherent characteristics, and it is very difficult to keep the quality of the product constant due to agglomeration of particles. In general, particle size analysis is performed by dynamic light scattering (DLS) during the dispersion process in order to select the optimum dispersant in the carbon black dispersion process. However, the existing low viscosity analysis provides reproducible particle distribution analysis results, but it is difficult to select the optimum dispersant because it is difficult to analyze the reproducible particle distribution at high viscosity. In this study, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) analysis methods were compared for reproducible particle size analysis of high viscosity carbon black. First, the stability of carbon black dispersion was investigated by particle size analysis by DLS and AsFlFFF according to milling time, and the validity of analytical method for the selection of the optimum dispersant useful for carbon black dispersion was confirmed. The correlation between color and particle size of particles in high viscosity carbon black dispersion was investigated by using colorimeter. The particle size distribution from AsFlFFF was consistent with the colorimetric results. As a result, the correlation between AsFlFFF and colorimetric results confirmed the possibility of a strong analytical method for determining the appropriate dispersant and milling time in high viscosity carbon black dispersions. In addition, for nanoparticles with relatively broad particle size distributions such as carbon black, AsFlFFF has been found to provide a more accurate particle size distribution than DLS. This is because AsFlFFF, unlike DLS, can analyze each fraction by separating particles by size.

테이프 케스팅 거동에 미치는 알루미나의 입도분포의 영향 (Effects of Particle Size Distribution of Alumina on Behaviors of Tape Casting)

  • 윤원균;김정주;조상희
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1173-1181
    • /
    • 1997
  • Effects of particle size distribution of alumina ceramics on behaviors of tape casting were investigated with emphases on the rheological characteristic of slurry, green density, green sheet strength, and sintering density. For the control of particle size distribution of alumina, the commercial grade low soda alumina, which had different mean particle size of 3.58 ${\mu}{\textrm}{m}$ and 0.42 ${\mu}{\textrm}{m}$, were chosen and blended together. As results, the mixing of 80 wt% fine powder and 20 wt% coarse powder(designated to FC20) led to the increase of packing density and strength of green sheet, and made it easy to handle during processing without lowering of sintering density. Besides, the pseudoplastic behavior of slurry decreased with increase of the fraction of coarse alumina powder.

  • PDF

수질에 대한 대기건식침적의 영향 - 건식침적량 추정 방법론의 비교를 중심으로 (Effect of Dry Deposition on Water Quality -The comparison of several methodologies for estimating dry deposition flux)

  • 정장표
    • 상하수도학회지
    • /
    • 제22권1호
    • /
    • pp.159-168
    • /
    • 2008
  • A special field experiment has been carried out from March 2001 to June 2001 at the Changhowon in Kyunggi to investigate a better methodology for the estimation of dry deposition of pollutions applicable in Korea. In this study, dry deposition plate was used to measure of total and water soluble acidic mass fluxes, and CPRI(Coarse Particle Rotary Impactor), CI(Cascade Impactor) were also used to measure ambient concentrations in various particle size ranges. Sehmel-Hodgson model was used to estimate dry depostion velocity and Weibull probability distribution function was applied to get generalized particle size distribution for the size fractioned concentration data sampled by CPRI and CI. Atmospheric dry deposition fluxes of mass and ionic matters estimated by the various techniques(one-step, multi-step, equi-concentration, subdivision for only the coarse particle range, applying Weibull distribution function, etc.) were compared to flux data sampled by DDP. It was found out that the deposition fluxes estimation methodology calculated by the each particle size range devided by particle size distribution characteristics and the rapidly changed points of deposition velocity using Weibull probability distribution function was the most applicable.

입경분포 분석을 활용한 합류식 하수관거 월류수(CSO) 오염물질 침강성 예측 (Application of Particle Size Analysis to Predict the Settleability of CSO Pollutants)

  • 윤현식;이두진;박영숙
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.295-302
    • /
    • 2006
  • Over the past decades, a flocculation and/or sedimentation process have been adopted to remove pollutants from CSOs. It has been learned that major factors affecting settlement of pollutants are the particle size distribution, their settling velocities and their specific gravity. It is, therefore, a good idea to analyze the particle size distribution and settleability of CSOs pollutants in order to develop details in designing a process. Discussed in this study are pollutant characteristics of CSOs such as particle size distribution and settleability of pollutants. The power law function is applied and is found to be an effective and reliable index for expressing the particle size distribution of pollutants in CSOs. Based on the regression analysis it is observed that the derived constants of curves representing settling velocity profile are proportional to the initial concentration of particles and to the ${\beta}$-values of power law distributions.

SMPS 시스템에서 용매(물)가 나노입도측정결과에 미치는 영향 (The Effect of Water Droplets on the Nano Particle Size Distribution using the SMPS System)

  • 황보선애;추민철
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.129-133
    • /
    • 2013
  • In this paper we have studied the effect of water droplet size on nano-particle size distribution using SMPS(Scanning Mobility Particle Sizer)system. It can be seen that the unknown peak at >100 nm was caused by water droplets which did not dry completely when DI water was used as a solvent in the SMPS system. Therefore, it is important to dry water droplets generated from atomizer in the SMPS system when measuring the particle size distribution using less than 100 nm nano-particles in diameter. From this study, It can be concluded that the napion was a useful material as dryer ones and using EAG(Electro Aerosol Generator) as a particle generator was the most effective in reducing the effect of water droplets.

용매 함량이 내충격성 폴리스티렌의 형태구조 및 고무 입도분포에 미치는 영향 (Effect of Solvent Content on Morphology and Rubber Particle Size Distribution of High Impact Polystyrene)

  • 정한균;박정신;장대석;이성재
    • 폴리머
    • /
    • 제26권3호
    • /
    • pp.307-315
    • /
    • 2002
  • 폴리스티렌의 취약한 성질을 개선한 내충격정 폴리스티렌 (HIPS)의 내충격성에 영향을 주는 요소는 분산된 고무상 입자의 크기 및 입도분포, 분자량, 형태구조, 그래프트율 등이다. 이에 따라 HIPS의 물성은 영향을 받으므로 이를 조절하거나 파악하는 것은 중요하다. 본 연구에서는 HIPS의 벌크-용액중합에서 용매함량이 고무입자의 형태구조 및 입도분포, 최종 물성에 미치는 영향에 대하여 고찰하였다. 먼저 중합 진행에 따른 분산상의 입도분포를 측정함으로써 상역전 현상의 변화 추이를 파악하여 전중합 시간을 결정하였다. 중합시 분산용매는 적절한 양에 도달하기 전까지는 고무입자의 크기가 증가하였으며, 그 후에는 점차적으로 감소하였다. 고무상의 형태구조는 분산용매가 증가함에 따라서 그래프트율이 증가하는 형태구조로 바뀌는 것으로 사료된다. 분산용매가 첨가됨에 따라 유변물성 및 인장물성이 취약해졌는데, 이는 분산용매에 의한 사슬이동반응이 매트릭스상인 폴리스티렌의 분자량을 감소시킨 점과 잔류 용매의 존재 때문이었다. 하지만 내충격성은 분산입자의 크기가 증가한 경우 향상되는 경향을 보였다.

금속 Powder Bed Fusion 적층제조 기술의 분말 입도 최적화를 위한 시뮬레이션 (Optimization of Metal Powder Particle Size Distribution for Powder Bed Fusion Process via Simulation)

  • 이화선;김대겸;김영일;남지은;손용;김택수;이빈
    • 한국분말재료학회지
    • /
    • 제27권1호
    • /
    • pp.44-51
    • /
    • 2020
  • Powder characteristics, such as density, size, shape, thermal properties, and surface area, are of significant importance in the powder bed fusion (PBF) process. The powder required is exclusive for an efficient PBF process. In this study, the particle size distribution suitable for the powder bed fusion process was derived by modeling the PBF product using simulation software (GeoDict). The modeling was carried out by layering sintered powder with a large particle size distribution, with 50 ㎛ being the largest particle size. The results of the simulation showed that the porosity decreased when the mean particle size of the powder was reduced or the standard deviation increased. The particle size distribution of prepared titanium powder by the atomization process was also studied. This study is expected to offer direction for studies related to powder production for additive manufacturing.