DOI QR코드

DOI QR Code

Optimization of Metal Powder Particle Size Distribution for Powder Bed Fusion Process via Simulation

금속 Powder Bed Fusion 적층제조 기술의 분말 입도 최적화를 위한 시뮬레이션

  • Lee, Hwaseon (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Dae-Kyeom (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Young Il (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Nam, Jieun (MMA team, Trinity Engineering) ;
  • Son, Yong (Digital Manufacturing Process Group, Korea Institute of Industrial Technology) ;
  • Kim, Taek-Soo (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Lee, Bin (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 이화선 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김대겸 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김영일 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 남지은 (트리니티 엔지니어링 MMA팀) ;
  • 손용 (한국생산기술연구원 디지털제조공정그룹) ;
  • 김택수 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 이빈 (한국생산기술연구원 한국희소금속산업기술센터)
  • Received : 2020.02.13
  • Accepted : 2020.02.24
  • Published : 2020.02.28

Abstract

Powder characteristics, such as density, size, shape, thermal properties, and surface area, are of significant importance in the powder bed fusion (PBF) process. The powder required is exclusive for an efficient PBF process. In this study, the particle size distribution suitable for the powder bed fusion process was derived by modeling the PBF product using simulation software (GeoDict). The modeling was carried out by layering sintered powder with a large particle size distribution, with 50 ㎛ being the largest particle size. The results of the simulation showed that the porosity decreased when the mean particle size of the powder was reduced or the standard deviation increased. The particle size distribution of prepared titanium powder by the atomization process was also studied. This study is expected to offer direction for studies related to powder production for additive manufacturing.

Keywords

References

  1. L. Yang, K. Hsu, B. Baughman, D. Godfrey, F. Medina, M. Menno and S. Wiener: Additive Manufacturing of Metals, D. T. Pham(Ed.), Springer, Swiss (2017) 5.
  2. J. M. Benson and E. Snyders: S. Afr. J. Ind. Eng., 26 (2015) 104. https://doi.org/10.7166/26-2-951
  3. J.-W. Oh, H. Na and H. Choi: J. Korean Powder Metall. Inst., 24 (2017) 494. https://doi.org/10.4150/KPMI.2017.24.6.494
  4. A. Mostafaei, P. R. D. Vecchis, I. Nettleship and M. Chmielus: Mater. Des., 162 (2019) 375. https://doi.org/10.1016/j.matdes.2018.11.051
  5. Y. Bai, G. Wagner and C. B. Williams: J. Manuf. Sci. Eng., 139 (2017) 081019. https://doi.org/10.1115/1.4036640
  6. E. Glatt, A. Wiegmann and J. Becker: GeoDict Base Reference, GeoDict (2019) 3.
  7. H. Gong, H. Gu, K. Zeng, J. J. S. Dilip, D. Pal, B. Stucker, D. Christiansen, J. Beuth, J. J. Lewandowski: Proceedings of the Solid Freeform Fabr. Symp. Austin, (2014) 256.
  8. J. Zheng, W. B. Carlson and J. S. Reed: J. Eur. Ceram. Soc., 15 (1995) 479. https://doi.org/10.1016/0955-2219(95)00001-B
  9. E. M. Sachs, M. J. Cima, M. A. Caradonna, J. Grau, J. G. Serdy, P. C. Saxton, S. A. Uhland and J. Moon: USA, US Patent, 6,596,224 (2003).
  10. A. M. Lorenz, E. M. Sachs and S. M. Allen: USA, US Patent, 6,719,948 (2004).
  11. E. M. Sachs: USA, US Patent, 6,036,777 (2000).
  12. J. Liu and M. L. Ryneson: USA, US Patent, 7,070,734 (2006).
  13. B. Utela, D. Storti, R. Anderson and M. Ganter: J. Manuf. Processes, 10 (2008) 96. https://doi.org/10.1016/j.jmapro.2009.03.002
  14. X. Ye, Y. Li, Y. Ai and Y. Nie: Adv. Powder Technol., 29 (2018) 2280. https://doi.org/10.1016/j.apt.2018.06.012
  15. A. B. Yu, R. P. Zou and N. Standish: Ind. Eng. Chem. Res., 35 (1996) 3730. https://doi.org/10.1021/ie950616a
  16. P. Goltermann, V. Johansen and L. Palbol: ACI Mater. J, 94 (1997) 435.
  17. T. Stovall, F. De Larrard and M. Buil: Powder Technol., 48 (1986) 1. https://doi.org/10.1016/0032-5910(86)80058-4
  18. F. D. Larrard: Concrete Mixture Proportioning: A Scientific Approach, E and FN Spon, London (1999) 38.
  19. J. D. Dewar: Computer Modelling of Concrete Mixtures, E and FN Spon, London (1999) 31.
  20. A. K. H. Kwan, K. W. Chan and V. Wong: Powder Technol., 237 (2013) 172. https://doi.org/10.1016/j.powtec.2013.01.043
  21. D. R. Hudson: J. Appl. Phys., 20 (1949) 154. https://doi.org/10.1063/1.1698327
  22. P. I. O'Toole and T. S. Hudson: J. Phys. Chem. C, 115 (2011) 19037. https://doi.org/10.1021/jp206115p
  23. H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker: Addit. Manuf., 1 (2014) 87. https://doi.org/10.1016/j.addma.2014.08.002
  24. A. B. Spierings, M. Voegtlin, T. Bauer and K. Wegener: Prog. Addit. Manuf., 1 (2016) 9. https://doi.org/10.1007/s40964-015-0001-4