• Title/Summary/Keyword: Display module bonding

Search Result 12, Processing Time 0.023 seconds

Development of automatic die bonder system for semiconductor parts assembly (반도체 소자용 자동 die bonding system의 개발)

  • 변증남;오상록;서일홍;유범재;안태영;김재옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.353-359
    • /
    • 1988
  • In this paper, the design and implementation of a multi-processor based die bonder machine for the semiconductor will be described. This is a final research results carried out for two years from June, 1986 to July, 1988. The mechanical system consists of three subsystems such as bonding head module, wafer feeding module, and lead frame feeding module. The overall control system consists of the following three subsystems each of which employs a 16 bit microprocessor MC 68000 : (i) supervisory control system, (ii) visual recognition / inspection system and (iii) the display system. Specifically, the supervisory control system supervises the whole sequence of die bonder machine, performs a self-diagnostics while it controls the bonding head module according to the prespecified bonding cycle. The vision system recognizes the die to inspect the die quality and deviation / orientation of a die with respect to a reference position, while it controls the wafer feeding module. Finally, the display system performs a character display, image display ans various error messages to communicate with operator. Lead frame feeding module is controlled by this subsystem. It is reported that the proposed control system were applied to an engineering sample and tested in real-time, and the results are sucessful as an engineering sample phase.

  • PDF

Upper Wafer Handling Module Design and Control for Wafer Hybrid Bonding (Wafer Hybrid Bonding을 위한 Upper Wafer Handling 모듈 설계 및 제어)

  • Kim, Tae Ho;Mun, Jea Wook;Choi, Young Man;An, Dahoon;Lee, Hak-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.142-147
    • /
    • 2022
  • After introducing Hybrid Bonding technology into image sensors using stacked sensors and image processors, large quantity production became possible. As a result, it is currently used in most of the CMOS image market in smartphones and other image-based devices worldwide, and almost all stacked CIS manufacturing sites have focused on miniaturization using hybrid bonding. In this study, an upper wafer handling module for Wafer to Wafer Hybrid Bonding developed to increase the alignment and precision between wafers when wafer bonding. The module was divided two parts to reduce error of both the alignment and degree of precision during wafer bonding. Wafer handling module developed both new Tip/Tilt system controlling θx,θy of upper wafer and striker to push upper wafer. Based on this, it was confirmed through the stability evaluation that the upper wafer handling module can be controlled without any problem during W2W hybrid bonding.

Development of Repair FPC Bonder (리페어 FPC 본더 개발)

  • Ahn Jung-Woo;Seo Ji-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.4 s.13
    • /
    • pp.27-31
    • /
    • 2005
  • This article contains the development of FPC bonder that used for repair or trial product. Nowadays, in FPO module process (including PDP) accept the thermo-compress bonding method when attach FPC(Flexible Printed Circuit Board), TCP(Tape Carrier Package) and COF(Chip on the FPC) by ACF(Anisotropic Conductive Film). This system consists of ACF attachment part, pre-bonding part, main bonding part, loading / unloading part. This composition is a stand-alone system, not an in-line system. Hereafter, this composition should be developing into in-line system in all area of FPD industry.

  • PDF

Effect of Die Bonding Epoxy on the Warpage and Optical Performance of Mobile Phone Camera Packages (모바일 폰 카메라 패키지의 다이 본딩 에폭시가 Warpage와 광학성능에 미치는 영향 분석)

  • Son, Sukwoo;Kihm, Hagyong;Yang, Ho Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • The warpage on mobile phone camera packages occurs due to the CTE(Coefficient of Thermal Expansion) mismatch between a thin silicon die and a substrate. The warpage in the optical instruments such as camera module has an effect on the field curvature, which is one of the factors degrading the optical performance and the product yield. In this paper, we studied the effect of die bonding epoxy on the package and optical performance of mobile phone camera packages. We calculated the warpages of camera module packages by using a finite element analysis, and their shapes were in good agreement showing parabolic curvature. We also measured the warpages and through-focus MTF of camera module specimens with experiments. The warpage was improved on an epoxy with low elastic modulus at both finite element analysis and experiment results, and the MTF performance increased accordingly. The results show that die bonding epoxy affects the warpage generated on the image sensor during the packaging process, and this warpage eventually affects the optical performance associated with the field curvature.

Study of a Low-Temperature Bonding Process for a Next-Generation Flexible Display Module Using Transverse Ultrasound (횡 초음파를 이용한 차세대 플렉시블 디스플레이 모듈 저온 접합 공정 연구)

  • Ji, Myeong-Gu;Song, Chun-Sam;Kim, Joo-Hyun;Kim, Jong-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.395-403
    • /
    • 2012
  • This is direct bonding many of the metal bumps between FPCB and HPCB substrate. By using an ultrasonic horn mounted on an ultrasonic bonding machine, it is possible to bond gold pads onto the FPCB and HPCB at room temperature without an adhesive like ACA or NCA and high heat and solder. This ultrasonic bonding technology minimizes damage to the material. The process conditions evaluated for obtaining a greater bonding strength than 0.6 kgf, which is commercially required, were 40 kHz of frequency; 0.6MPa of bonding pressure; and 0.5, 1.0, 1.5, and 2.0 s of bonding time. The peel off test was performed for evaluating bonding strength, which was found to be more than 0.80 kgf.

Magnetic Pulse Solutions (마그네틱 펄스 용접 및 성형기공)

  • Park, Sam-Su
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.53-81
    • /
    • 2006
  • A COG(Chip on Glass) bonding process that is one of display packaging technology and bonds between driver IC chip and a glass panel using ACF(Anisotropic Conductive Film)has been investigated by using diode laser. This method is possible to raise cure temperature of ACF within one second and can reduce the total process time for COG bonding by a conventional method such as a hot plate. Also we can get good pressure mark on the surface of electrodes and higher bonding strength than that by convention method. Results show that laser COG bonding can give low pressure bonding and decrease a warpage of panel. We believe that it can be applied to fine pitch module.

  • PDF

Study of Metal(Au) Bump for Transverse Ultrasonic Bonding (금속(Au)범프의 횡초음파 접합 조건 연구)

  • Ji, Myeong-Gu;Song, Chun-Sam;Kim, Joo-Hyun;Kim, Jong-Hyeong
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2011
  • In this paper, the direct bonding process between FPCB and HPCB was studied. By using an ultrasonic horn which is mounted on the ultrasonic bonding machine, it is alternatively possible to bond the gold pads attached on the FPCB and HPCB at room temperature without an adhesive like ACA or NCA. The process condition for obtaining more bonding strength than 0.6 Kgf, which is commercially required, was carried out as 40 kHz of frequency, 0.6 MPa of bonding pressure and 2 second of bonding time. The peel off test was performed for evaluating bonding strength which results in more than 0.8 Kgf.

Synthesis of Electro-conducting Macroporous Aluminosilicate-Carbon Nanocomposite (전기전도성을 가지는 매크로다공성 알루미노실리케이트-탄소 복합체 제조)

  • Choi, Kwang Min;Cho, Woo-Seok;Kim, Jong-Young;Jung, Jong-Yeol;Baik, Seung-Woo;Lee, Kyu Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, macroporous ceramic materials with high electrical conductivity and mechanical strength are urgently needed for semiconductor and display manufacturing devices. In this work, we obtained electro-conducting macroporous aluminosilicate ceramics having surface resistivity of 108~1,010 ohm by dispersing electro-conducting carbon in ceramic matrix. By addition of 0.5~3.0 wt% frit glass, chemical bonding between grains was strengthened, and flexural strength was enhanced up to 160 MPa as a result. We evaluated the characteristics of present ceramics as vacuum chuck module for liquid crystal display display manufacturing devices.

Fabrication and Reliability Test of Device Embedded Flexible Module (디바이스 내장형 플렉시블 전자 모듈 제조 및 신뢰성 평가)

  • Kim, Dae Gon;Hong, Sung Taik;Kim, Deok Heung;Hong, Won Sik;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.84-88
    • /
    • 2013
  • These days embedded technology may be the most significant development in the electronics industry. The study focused on the development of active device embedding using flexible printed circuit in view of process and materials. The authors fabricated 30um thickness Si chip without any crack, chipping defects with a dicing before grinding process. In order to embed chips into flexible PCB, the chip pads on a chip are connected to bonding pad on flexible PCB using an ACF film. After packaging, all sample were tested by the O/S test and carried out the reliability test. All samples passed environmental reliability test. In the future, this technology will be applied to the wearable electronics and flexible display in the variety of electronics product.