• Title/Summary/Keyword: Display Panel

Search Result 1,759, Processing Time 0.048 seconds

Transparent Conductive AGZO-PET Film by Roll-to-Roll Sputter and Its Application to Resistive Type Touch Panel Fabrication

  • Lee, Sang-Ju;Lee, Sang-Mun;Lee, Yoon-Su;Kim, Tae-Hoon;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1535-1537
    • /
    • 2009
  • High performance resistive type touch panel was fabricated on flexible polyethylene terephthalate (PET) substrates coated with Al- and Ga-codoped ZnO (AGZO) films. The AGZO films were deposited by roll-to-roll direct current magnetron sputter at room temperature. The AGZO thin films on PET substrates showed high transparency (> 85 % at 550 nm) and low sheet resistance (450 ${\Omega}$/sq.). These values were similar to those of commercial ITO films used for resistive type touch panel.

  • PDF

Fabrication and Characterization of Dielectric Materials of Front and Back Panel for PDP

  • Chang, Myeong-Soo;Pae, Bom-Jin;Lee, Yoon-Kwan;Ryu, Byung-Gil;Park, Myung-Ho
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.39-43
    • /
    • 2001
  • The glass compositions of $PbO-SiO_2-B_2O_3$ system and $P_2O_5-PbO-ZnO$ system for the transparent dielectric materials for front panel and $P_2O_5$-ZnO-BaO and $SiO_2-ZnO-B_2O_3$ for the reflective dielectric materials for back panel of PDP (Plasma Display Panel) were investigated. As a result, transparent dielectric materials for front panel showed good dielectric properties, high transparency, and proper thermal expansion matching to soda lime glass substrate. And the reflective dielectric layers for back panel were prepared from two series of parent glass and oxide filler. It was found that these glassceramics are useful materials for dielectric layers in PDP device, as they have similar thermal expansion to soda-lime glass plate, high reflectance, and low sintering temperature. In particular, the addition of $BPO_4$ and $TiO_2$ as fillers to $SiO_2-ZnO-B_2O_3$ system is considered to be the most effective for acquiring good properties of lower dielectric layer for PDP device.

  • PDF

Enhancement of Transmittance Efficiency of TFT-LCD using High Transmittance Polarizer and Dielectric Anisotropy Liquid Crystal

  • Lim, Sung-Hoon;Son, Dong-Yeon;Choi, Kyung-Seob;Choi, Jae-Ho;Lee, Jong-Hwan;Choi, Kwang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.661-663
    • /
    • 2009
  • This paper describes a fabrication method for high transmittance panel using newly designed polarizer and liquid crystal with a high dielectric anisotropy (${\Delta}{\varepsilon}$). To enhance the transmittance of the panel without contrast ratio reduction, new polarizer with high transmittance and high ${\Delta}{\varepsilon}$ liquid crystal were used. The transmittance of the liquid crystal display (LCD) panel employed by a new polarizer was increased by 6% over that of the panel with a conventional polarizer and liquid crystal in LCD industry.

  • PDF

Nonvolatile memory devices with oxide-nitride-oxynitride stack structure for system on panel of mobile flat panel display

  • Jung, Sung-Wook;Choi, Byeong-Deog;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.911-913
    • /
    • 2008
  • In this work, nonvolatile memory (NVM) devices for system on panel of flat panel display (FPD) were fabricated using low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology with an oxide-nitride-oxynitride (ONOn) stack structure on glass. The results demonstrate that the NVM devices fabricated using the ONOn stack structure on glass have suitable switching characteristics for data storage with a low operating voltage, a threshold voltage window of more than 1.8 V between the programming and erasing (P/E) states after 10 years and its initial threshold voltage window (${\Delta}V_{TH}$) after $10^5$ P/E cycles.

  • PDF

A Study on High Efficient Energy Recovery Circuit for AC Plasma Display Panel Drive (AC Plasma Display Panel구동 장치의 고효율 전력 회수 회로에 관한 연구)

  • Yoon Won-Sik;Kang Feel-Soon;Park Han-Woog;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.442-445
    • /
    • 2001
  • The sustaining driver for color ac plasma display panel should provide alternating high voltage pulses and recover the energy discharged from the intrinsic capacitance between the scanning and sustaining electrodes inside the panel. In this paper, a novel efficient energy recovery circuit employing boost-up function is proposed to achieve a faster rise-time and in order to obtain a stable sustain voltage. The principle of operation, features, and simulated results are illustrated and verified on an equivalent capacitance, which is equals In that of 40-inch-panel, 200 (kHz).

  • PDF

Analysis of Natural Convection Heat Transfer from Electronic Modules in a Plasma Display Panel (플라즈마 영상장치의 채널 사이에 놓인 전자모듈의 자연대류 열전달 해석)

  • Choi, In-Su;Park, Byung-Duck;Seo, Joo-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • The heat transfer characteristics of a plasma display panel has been investigated for cooling an electronic module. Hence, a two dimensional $\kappa-{\varepsilon}$ turbulent model was developed to predict the temperatures of the panel and module. The heat conduction was solve for the material region. To consider the mixed convection at the solid-fluid interfaces between the air and the panel and module, the energy equation was solved simultaneously. When the electronic module stands face to face with the panel, the temperatures of panel and module are lower than other arrangement due to the chimney effect. However the gap between the panel and module does not affect significantly the maximum temperature when the aspect ratio is less than 0.1. To maintain the maximum temperature of the module under a certain limit, the passage of air should be well designed by the optimal layout of electronic modules which have different heat emission.

  • PDF