• 제목/요약/키워드: Displacement magnification

검색결과 32건 처리시간 0.031초

초정밀 나노 스테이지에서의 다중 변위 확대 기구 해석 (Analysis of Multiple Displacement Magnification Mechanism in Ultraprecision Nano Stage)

  • 민경석;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1273-1276
    • /
    • 2005
  • A displacement magnification mechanism is usually employed in a nano-positioning stage to achieve a large stage motion. A lever mechanism is the most widely used displacement magnifying mechanism. For more large stage motion, double or multiple lever mechanisms can be used. In this case, a more accurate analysis model is needed. This study proposes a more reasonable analysis model for a multiple lever mechanism based on the single lever mechanism model. This paper describes that the high equivalent stiffness of the lever is the most important factor reducing the magnification ratio of the lever mechanism through increasing the deflection of the link and including the axial displacement of the pivot.

  • PDF

유연 힌지를 이용한 이중레버 시스템의 변위증폭 메카니즘에 관한 연구 (A Study on the Displacement Magnification Mechanism of Two-Lever System using Flexure Hinge)

  • 제원수;예상돈;민병현
    • 한국기계가공학회지
    • /
    • 제7권2호
    • /
    • pp.60-65
    • /
    • 2008
  • The high-technology industries including a semi-conductor and an information communication need an ultra-precision technology from the technological points of view. Nano technology based on an ultra-precision technology is being studied to overcome the delicate technology that may occur in the semi-conductor fields. Then, the transferring equipment with high resolution and long displacement becomes an important technology. The goal of this study is to analyze the displacement magnification mechanism driven by piezoelectric actuator which has high resolution and fast response characteristics using flexure hinge with the merits of soft displacement, negligible back-lash and stick-slip, and no-lubrication. The analyses to reduce the magnification losses occurred during the magnification process are performed using ANSYS software based on FEM. The five design variables such as arm thickness, thickness of hinge, radius of hinge, length of input side at the 1st lever and magnification ratio of 1st lever are optimized to induce the maximum magnification ratio using Taguchi method.

  • PDF

나노 변위확대기구의 정밀위치결정기구에 관한 연구 (Development of the Precision Positioning Mechanism by Nano Displacement Magnification Device)

  • 박창용;권현규;조지준
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.97-103
    • /
    • 2013
  • A new precision positioning mechanism for stage was been developed by Displacement Magnification Device(DMD) in this paper. The DMD was composed of the beam and multilayer piezoelectric actuators. The theoretical and experimental analysis of DMD to enlarge displacement more then 50times were discussed. And the 2-axis stage by using displacement amplification apparatus was added in the new DMD, and it was able to do it through finite element analysis and experiment. As the results, the magnification of DMD can be obtained about $100{mu}m$ displacement to the 10V input voltage($1.5{mu}m$). And the about 50nm of linearity error in the $30{mu}m$ measurement range and 20times of the amplification in displacement can be measured. In addition, the experimental results are confirmed the possibility of millimeter displacement characteristics and correspond to finite element analysis results.

정밀 스테이지에서 출력변위 확대를 위한 레버의 해석 (Theoretical Analysis of Levers in a Precision Stage for Large Displacement)

  • 황은주;민경석;송신형;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.720-723
    • /
    • 2004
  • Lever mechanisms are usually employed to enlarge output displacement in precision stages. In this study, theoretical analysis of a lever is presented including bending effect and relation between dimension parameters and an objective function. The objective function is chosen as multiplication of magnification ratio and forcedisplacement transmission. Through theoretical analysis, this study presents optimal values for the parameters and the analysis is verified by finite element method.

  • PDF

탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(II) -축대칭 쉘의 동적 응답 해석을 중심으로 - (Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to the Dynamic Response Analysis of Axisymmetric Shell-)

  • 조진구
    • 한국농공학회지
    • /
    • 제38권5호
    • /
    • pp.74-84
    • /
    • 1996
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. For developing a program to analyze the dynamic response of an axisymmetric shell in this study, the material nonlinearity effect on the dynamic response was formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion was numerically solved by a central difference scheme. A complete finite element program has been developed and the results obtained by it are compared with those in the references 1 and 2. The results are in good agreement with each other. As a case study of its application, the developed program was applied to a dynamic response analysis of a nuclear reinforced concrete containment structure. The results obtained from the' numerical examples are summarized as follows : 1. The dynamic magnification factor of the displacement and the stress were unrelated with the concrete strength. 2. As shown by the results that the displacement dynamic magnification factor were form 1.7 to 2.3 and the stress dynamic magnification factor from 1.8 to 2.5, the dynamic magnification factor of stress were larger than that of displacement. 3. The dynamic magnification factor of stress on the exterior surface was larger than that on the interior surface of the structure.

  • PDF

마찰감쇠기가 설치된 건물 응답의 근사해 : 재 고찰 및 새로운 결과 (Approximate solution for a building installed with a friction damper : revisited and new result)

  • 민경원;성지영;이성경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.850-854
    • /
    • 2009
  • Approximate analysis for a building installed with a friction damper is revisited to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor (DMF) for the building with combined viscous and friction damping. It is found out that DMF is dependent on friction force ratio and resonance frequency. Linear transfer function from input external force to output building displacement is obtained by simplifying DMF equation. Root mean square of building displacement is derived under earthquake-like random excitation. Finally, design of friction damper is proposed by processing target control ratio, damping ratio factor, and friction force in sequence.

  • PDF

유연 힌지 구조의 스테이지 구동범위 확대를 위한 힌지의 목두께 해석 (Analysis of Flexure Hinge Neck Thickness of a Lever in Ultra Precision Stages of a Long Travel Range)

  • 황은주;민경석;송신형;최우천
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.121-129
    • /
    • 2005
  • Lever mechanisms are usually employed to enlarge output displacements in precision stages. In this study, theoretical analysis is done for a precision stage employing a lever and flexure hinges, including bending effect. This study presented relations between design parameters and magnification ratio. This study presents optimal values for the parameters to achieve a longer stage displacement. The analysis is verified by finite element analysis. It is found that adjusting stiffnesses can increase the travel range significantly.

단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계 (Design of Friction Dampers for Seismic Response Control of a SDOF Building)

  • 민경원;성지영
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

파노라마방사선사진에서 환자의 머리 위치가 하악 수직, 수평 확대율에 미치는 영향 : 전후방 및 좌우 이동 (Effect of Head Positioning in Panoramic Radiography on the Vertical and Horizontal Magnification : Displacement along the Sagittal and Transverse Plane)

  • 김용건;이영균;안서영
    • 구강회복응용과학지
    • /
    • 제29권3호
    • /
    • pp.249-258
    • /
    • 2013
  • 이 연구의 목적은 환자의 머리 위치에 따른 파노라마방사선사진의 수평 및 수직 확대율을 비교 평가하는 것이었다. 직경 4 mm인 금속구를 건조 두개골의 하악 전치부와 우측 대구치부의 치조골 상방에 위치시켰다. 수평 및 수직적 위치의 변화를 재현하기 위해 수직, 수평 이동량을 조절할 수 있는 두개골 고정장치를 이용하여, 전방, 후방, 좌측 및 우측으로 이동시킨 후 파노라마방사선사진을 OP-100D를 이용하여 획득하였다. 촬영된 영상은 DICOM 형식으로 저장되었고, INFINITT PACS software를 이용하여 금속구의 폭과 높이의 평균값을 구하였다. 적절한 위치에서 촬영된 파노라마방사선사진에서 금속구의 수평 확대율은 1.224-1.439였고, 수직 확대율은 1.286-1.345였다. 건조 두개골의 위치 변화에 따른 수평 확대율은 0.798-6.297로 통계적으로 유의한 차이를 보인 반면(P<0.05), 수직 확대율은 1.245-1.418 정도로 수평 확대율에 비해 차이를 보이지 않았다.

파동 유도 봉의 단면 변화에 따른 진동 전달 특성 (Vibration Transmission Characteristics due to the Variation in the Cross-section of a Waveguide)

  • 김대승;김진오
    • 한국소음진동공학회논문집
    • /
    • 제17권4호
    • /
    • pp.310-316
    • /
    • 2007
  • This paper presents a theoretical approach to describe the characteristics of vibration transmission in the waveguide with varying cross-section. The waveguide considered in this paper has a tapered section in the middle of an axisymmetric stepped rod. The distributions of the vibration displacement and stress along the waveguide were derived and they were verified by comparing the theoretically-calculated results with those obtained by the finite-element analysis. The vibration magnification and the concentrated stress under forced vibration were calculated for this rod according to the taper length. The paper established a theoretical basement of designing waveguides for maximizing the vibration transmission under minimum stress concentration.