• Title/Summary/Keyword: Displacement Constraint

Search Result 134, Processing Time 0.025 seconds

Jaya algorithm to solve single objective size optimization problem for steel grillage structures

  • Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this paper is to present a new and efficient optimization algorithm called Jaya for optimum design of steel grillage structure. Constrained size optimization of this type of structure based on the LRFD-AISC is carried out with integer design variables by using cross-sectional area of W-shapes. The objective function of the problem is to find minimum weight of the grillage structure. The maximum stress ratio and the maximum displacement in the inner point of steel grillage structure are taken as the constraint for this optimization problem. To calculate the moment and shear force of the each member and calculate the joint displacement, the finite elements analysis is used. The developed computer program for the analysis and design of grillage structure and the optimization algorithm for Jaya are coded in MATLAB. The results obtained from this study are compared with the previous works for grillage structure. The results show that the Jaya algorithm presented in this study can be effectively used in the optimal design of grillage structures.

Partitioned structural eigenvalue analysis (부분 구조물 합성으로 이루어진 고유치 문제 해석)

  • Jung, Eui-Il;Na, Hye-Joong;No, Suk-Hong;Chun, Du-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.117-119
    • /
    • 2005
  • For large structural eigen-analysis, the whole structure is divided into some partitioned structures and through synthesis of partitioned structural model the eigen-data of structure can be obtained. In that case, eigenvalue problem consists of semidefinite mass matrix form because of displacement constraint condition. In this work the eigenvalue problem is considered by means of several method, determinant search and null space reduction method.

  • PDF

A Study on the Lubrication Characteristics of Liquid Crystals (액정의 윤활특성에 관한 연구)

  • 임윤철;민지홍
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.30-37
    • /
    • 1992
  • The displacement and pressure field of liquid crystals are analyzed numerically and compared with classical Reynolds theory. A plane slider bearing is employed as a simple example considering elasticity, permeability and splay effect which are the inherent characteristics of layered liquid crystals. Due to the geometric constraint of thin wedge and the strong anchoring behavior of the liquid crystals dislocations are inevitable. A finite element method is used to solve five coupled nonlinear equations. The load characteristics based on the pressure distribution along the gap shows that the liquid crystals can carry large load compared to the conventional lubricants.

Velocity Measurement System Design Based on Quantization Error Constraint

  • Katsunori, Shida;Toyonori, Matsuda
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.86.1-86
    • /
    • 2001
  • Combined with a counter, wheel or strip encoders which have equally divided markers are one of frequent measuring choices towards various applications in terms of cost, simplicity, and diversity of measurements, e.g., measuring displacement, velocity, acceleration, and so on. Often, velocity is measured by counting the series of reference clocks for a period of time which sensor-carrying device took for traveling two adjacent encoding markers. Quantizaion error of such that the disturbance caused by quantization error is under control. This paper identifies design issues, developes theory, and proposes a paradigm to design a velocity measurement system such ...

  • PDF

MEASUREMENT OF THREE-DIMENSIONAL TRAJECTORIES OF BUBBLES AROUND A SWIMMER USING STEREO HIGH-SPEED CAMERA

  • Nomura, Tsuyoshi;Ikeda, Sei;Imura, Masataka;Manabe, Yoshitsugu;Chihara, Kunihiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.768-772
    • /
    • 2009
  • This paper proposes a method for measurement three-dimensional trajectories of bubbles generated around a swimmer's arms from stereo high-speed camera videos. This method is based on two techniques: two-dimensional trajectory estimation in single-camera images and trajectory pair matching in stereo-camera images. The two-dimensional trajectory is estimated by block matching using similarity of bubble shape and probability of bubble displacement. The trajectory matching is achieved by a consistensy test using epipolar constraint in multiple frames. The experimental results in two-dimensional trajectory estimation showed the estimation accuracy of 47% solely by the general optical flow estimation, whereas 71% taking the bubble displacement into consideration. This concludes bubble displacement is an efficient aspect in this estimation. In three-dimensional trajectory estimation, bubbles were visually captured moving along the flow generated by an arm; which means an efficient material for swimmers to swim faster.

  • PDF

Study on Hull Form Variation of Fore Body Based on Multiple Parametric Modification Curves (다중 파라메트릭 변환곡선 기반 선수 선형 변환기법 연구)

  • Park, Sung-Woo;Kim, Seung-Hyeon;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.96-108
    • /
    • 2022
  • In this paper, we propose a systematic hull form variation technique which automatically satisfies the displacement constraint and guarantees a high level of fairness. This method is possible through multiple parameter correction curves. The present method is to improve the hull form variation method based on parametric modification function and consists of two sub-categories: SAC variation and section lines modification. For SAC variation, the utilization of two B-Spline curves satisfying GC1 condition led to the satisfaction of displacement constraint and high level of fairness at the same time. Section lines modification methods involves in using two fuctions: the first is the waterplane modification function combining two cubic splines. the other function is the sectional area modification function consisting of 2nd order polynomial over the DLWL(Design Load Waterline) and 3rd order polynomial below the DLWL, This function enables not only the fundamental U-V section shape variation but also systematically modified section lines. The present method is expected to be more useful in the hull form optimization process using CFD compared to the existing method.

Dynamic Response of a Beam Including the Mass Effect of the Moving Loads (이동 하중의 질량효과를 고려한 보의 동적응답)

  • 최교준;김용철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • The system such as railway bridge can be modelled as the restrained beam with intermediate supports. This kind of structures are subject to the moving load, which has a great effect on dynamic stresses and can cause sever motions, especially at high velocities. Therefore, to analyze the dynamic characteristics of the system due to the moving load is very important. In this paper, the governing equation of motion of a restrained beam subjected to the moving load is derived by using the Hamilton's principle. The orthogonal polynomial functions, which are trial functions and satisfying the geometric and dynamic boundary conditions, are obtained through simple procedure. The dynamic response of the system subjected to the moving loads is obtained by using the Galerkin's method and the numerical time integration technique. The numerical tests for various constraint, velocity and boundary conditions were preformed. Furthermore, the effects of mass of the moving load are studied in detail.

Attenuation of Structureborne Noise Using Wave Guide Theory (도파관 이론을 이용한 고체소음 전달해석)

  • Suk-W.,Kim;Jae-S.,Kim;Keuk-C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.78-86
    • /
    • 1990
  • The vertical attenuation of structureborne noise in a ship structure is studied by means of the wave guide theory. When modeling a ship structure as an acoustic wave guide system the cross mode is derived from the assumption about the boundary of the system, i.e. the constraint due to transverse frames. In this paper, the constraint is relaxed so that the displacement at the boundaries could take place. The numerical result shows better agreement with the measured one than that of the previous assumption of fixed boundary condition in the low frequency region. The effect of local changes of mass and damping factors on the attenuation losses are also investigated numerically.

  • PDF

A New Anisoparametric Out-of-Plane Deformable Curved Beam Element (새로운 부등매개변수 면회변형 곡선보 요소)

  • Yu, Jae-Hyeong;Yu, Seung-Won;Min, Ok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.582-591
    • /
    • 2001
  • It is known that the reduced integration, modified shape function, anisoparametric and non-conforming element can reduce the error induced by stiffness locking phenomenon in the finite element analysis. In this study, we propose new anisoparametric curved beam element. The new element based on reduced minimization theory is composed of different shape functions in each displacement field. By the substitution of this modified shape function, the unmatched coefficient that cause stiffness locking in the constraint energy is eliminated. To confirm the availability of this new model, we performed numerical tests for a simple model. As a result of numerical test, the undulate stress patterns are disappeared in static analysis, and displacements and stresses are close to exact solution. Not only in the static analysis but also in the eigen analysis of free vibrated curved beam model, this element shows successful convergent results.

Structural Optimization based on Equivalent Static Load for Structure under Dynamic Load (동하중을 받는 구조물의 등가정하중 기반 구조최적화 연구)

  • Kim, Hyun Gi;Kim, Eui young;Cho, Maenghyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.236-240
    • /
    • 2013
  • Due to difficulty of considering dynamic load in side of a computer resource and computing time, it is common that external load is assumed as ideal static load. However, structural analysis under static load cannot guarantee the safety of structural design. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. And previously reported works to distribute equivalent static load were based on ad hoc methods. However, it is appropriate to take into account the stress constraint for the safety design. Moreover, the improper selection of loading position may results in unreliable structural design. The present study proposes the methodology to optimize an equivalent static which distributed on the primary DOFs, DOFs of the constraint elements, DOF of an external load as positions. In conclusion, the reliability of proposed method is demonstrated through a global optimization.

  • PDF