Browse > Article
http://dx.doi.org/10.12989/scs.2018.26.2.163

Jaya algorithm to solve single objective size optimization problem for steel grillage structures  

Dede, Tayfun (Department of Civil Engineering, Faculty of Engineering, Karadeniz Technical University)
Publication Information
Steel and Composite Structures / v.26, no.2, 2018 , pp. 163-170 More about this Journal
Abstract
The purpose of this paper is to present a new and efficient optimization algorithm called Jaya for optimum design of steel grillage structure. Constrained size optimization of this type of structure based on the LRFD-AISC is carried out with integer design variables by using cross-sectional area of W-shapes. The objective function of the problem is to find minimum weight of the grillage structure. The maximum stress ratio and the maximum displacement in the inner point of steel grillage structure are taken as the constraint for this optimization problem. To calculate the moment and shear force of the each member and calculate the joint displacement, the finite elements analysis is used. The developed computer program for the analysis and design of grillage structure and the optimization algorithm for Jaya are coded in MATLAB. The results obtained from this study are compared with the previous works for grillage structure. The results show that the Jaya algorithm presented in this study can be effectively used in the optimal design of grillage structures.
Keywords
grillage structures; jaya optimization; LRFD-AISC; W-shapes;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Warid, W., Hizam, H., Mariun, N. and Abdul-Wahab, N.I. (2016), "Optimal power flow using the jaya algorithm", Energies, 9(678), 1-18.
2 Zhang, Y., Yang, X., Cattani, C., Rao, R.V., Wang, S. and Phillips, P. (2016), "Tea category identification using a novel fractional fourier entropy and jaya algorithm", Entropy, 18(77), 1-17.   DOI
3 Zhang, Z., Pan, J., Fu, J., Singh, H.K., Pi, Y.L., Wu, J. and Ra, R. (2017), "Optimization of long span portal frames using spatially distributed surrogates", Steel Compos. Struct., Int. J., 24(2), 227-237.
4 Zula, T., Kravanja, S. and Klansek, U. (2016), "MINLP optimization of a composite I beam floor system", Steel Compos. Struct., Int. J., 22(5), 1163-1192.   DOI
5 Artar, M. (2016a), "Optimum design of braced steel frames via teaching learning based optimization", Steel Compos. Struct., Int. J., 22(4), 733-744.   DOI
6 Artar, M. (2016b), "A comparative study on optimum design of multi-element truss structures", Steel Compos. Struct., Int. J., 22(3), 521-535.   DOI
7 Aydogdu, I., Efe, P., Yetkin, M. and Akin, A. (2017), "Optimum design of steel space structures using social spider optimization algorithm with spider jump technique", Struct. Eng. Mech., Int. J., 62(3), 259-272.   DOI
8 Cerny, V. (1985), "Thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm", J. Optim. Theory Appl., 45(1), 41-51.   DOI
9 Das, M., Rudrapati, R., Ghosh, N. and Rathod, L. (2016), "Input Parameters optimization in EDM Process using RSM and Jaya Algorithm", Int. J. Current Eng. Technol., 6, 109-112.
10 Dede, T. (2013), "Optimum design of grillage structures to LRFDAISC with teaching-learning based optimization", Struct. Multidisc. Optim., 48(5), 955-964.   DOI
11 Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, New York, USA.
12 Dorigo, M. (1991), "Ant Colony Optimization, New Optimization Techniques in Engineering", by Onwubolu, G.C. and Babu, B.V., Springer-Verlag Berlin Heidelberg, pp. 101-117.
13 Erdal, F. (2007), "Optimum design of grillage system using harmony search algorithm", M.S. Thesis; Middle East Technical University, Ankara, Turkey.
14 Erdal, F. and Saka, M.P. (2008), "Effect of beam spacing in the harmony search based optimum design of grillages", Asian J. Civil Eng., 9(3), 215-228.
15 Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76(2), 60-68.   DOI
16 Gholizadeh, S., Davoudi, H. and Fattahi, F. (2017), "Design of steel frames by an enhanced moth-flame optimization algorithm", Steel Compos. Struct., Int. J., 24(1), 129-140.   DOI
17 Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI, USA.
18 Kaveh, A. and Abadi, A.S.M. (2011), "Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls", Int. J. Civil Eng., 9(1), 1-8.
19 Kaveh, A. and Mahdavi, V.R. (2015), "Colliding bodies optimization for size and topology optimization of truss structures", Struct. Eng. Mech., Int. J., 53(5), 847-865.   DOI
20 Kaveh, A. and Talatahari, S. (2010b), "A novel heuristic optimization method: Charged system search", ActaMechanica, 213(3), 267-289.
21 Kaveh, A. and Talatahari, S. (2010a), "Charged system search for optimum grillage design using the LRFD-AISC code", J. Construct. Steel Res., 66(6), 767-771.   DOI
22 LRFD-AISC, Manual of Steel Construction (1999), "Load and resistance factor design. Metric conversion of the second edition", Volume 1-2, AISC, Chicago, IL, USA.
23 Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, Vol. 4 (held in Perth), pp. 1942-1948. Piscataway: IEEE Service Center.
24 Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220(4598), 671-680.   DOI
25 Kurada, R.R. and Kanadam, K.P. (2016), "Automatic Unsupervised Data Classification Using Jaya Evolutionary Algorithm", Adv. Computat. Intel.: Int. J. (ACII), 3(2), 35-42.
26 Phulambrikar, S. (2016), "Solving combined economic emission dispatch solution using jaya optimization algorithm approach", Int. Res. J. Eng. Technol. (IRJET), 3(11), 501-512.
27 Ramanauskas, M., Sesok, D., Belevicius, R., Kurilovas, E. and Valentinavicius, S. (2017), "Genetic algorithm with modified crossover for grillage optimization", Int. J. Comput. Commun. Control, 12(3), 393-401.   DOI
28 Rao, R.V. and Rai, D.P. (2017a), "Optimisation of welding processes using quasi-oppositional-based Jaya algorithm", J. Experim. Theor. Artif. Intel., 29, 1099-1117.   DOI
29 Rao, R.V. and Rai, D.P. (2017b), "Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm", J. Mech. Sci. Technol., 31(5), 2513-2522.   DOI
30 Rao, R.V., Rai, D.P., Ramkumar, J. and Balic, J. (2016), "A new multi-objective Jaya algorithm for optimization of modern machining processes", Adv. Production Eng. Manage., 11(4), 271-286.   DOI
31 Rao, R.V., Rai, D.P. and Balic, J. (2017), "A multi-objective algorithm for optimization of modern machining processes", Eng. Appl. Artif. Intel., 61, 103-125.   DOI
32 Sesok, D., Mockus, J., Belevicius, R. and Kaceniauskas, A. (2010b), "Global optimization of grillages using simulated annealing and high performance computing", J. Civil Eng. Manage., 16(1), 95-101.   DOI
33 Saka, M.P. and Erdal, F. (2009), "Harmony search based algorithm for the optimum design of grillage systems to LRFD-AISC", Struct. Multidiscipl. Optimiz., 38(1), 25-41.   DOI
34 Saka, M.P., Daloglu, A. and Malhasc, F. (2000), "Optimum spacing design of grillage systems using a genetic algorithm", Adv. Eng. Software, 31(11), 863-873.   DOI
35 Sesok, D., Belevicius, R. Kaceniauskas, A. and Mockus, J. (2010a), "Application of GRID computing for optimization of grillages", Mechanika, 2(82), 63-69.
36 Topal, U. and O zturk, H.T. (2014),"Buckling load optimization of laminated plates via artificial bee colony algorithm", Struct. Eng. Mech., Int. J., 52(4), 755-765.   DOI