• Title/Summary/Keyword: Dispersive Curve

Search Result 44, Processing Time 0.021 seconds

Accurate FDTD Dispersive Modeling for Concrete Materials

  • Chung, Haejun;Cho, Jeahoon;Ha, Sang-Gyu;Ju, Saehoon;Jung, Kyung-Young
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.915-918
    • /
    • 2013
  • This work presents an accurate finite-difference time-domain (FDTD) dispersive modeling of concrete materials with different water/cement ratios in 50 MHz to 1 GHz. A quadratic complex rational function (QCRF) is employed for dispersive modeling of the relative permittivity of concrete materials. To improve the curve fitting of the QCRF model, the Newton iterative method is applied to determine a weighting factor. Numerical examples validate the accuracy of the proposed dispersive FDTD modeling.

Identification of Guided-wave Modes for on-line monitering in the pipe weldment (배관 용접부의 상시감시를 위한 유도초음파 모드 규명)

  • Park Ik-Geun;Kim Tae-Hyeong;Lee Cheol-Gu;Kim Yong-Gwon;Park Tae-Seong;Lee Jin-Hyeok
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.307-309
    • /
    • 2006
  • For efficient NDE of pipes, essential components of power plant facilities, ultrasonic guided waves were generated and received applying an air-coupled transducer and comb one as non-contact technology, Mode generation and selection were predicted based on theoretical dispersive curve and the element spaceof a comb transducer. In addition, a receiving angle of the air-coupled transducer was determined to acquire the predicted modes by theoretical phase velocity of each mode. Theoretical dispersive curve was compared with the results of the time-frequency spectroscopes based on the wavelet transform and 2D-FFT to identify the characteristics of the received mode. The received modes show a good agreement with the predicted ones.

  • PDF

Determination of dielectric property of subsurface by dispersive guided GPR wave (레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.25-30
    • /
    • 2006
  • When wet soil overlies dry soil, which can be found in the infiltration test, the radar wave is not attenuated and guided within wet soil layer. This phenomenon is known to be the dispersive guided wave and happens when the thickness of upper wet layer is less than or comparable to the wavelength of radar wave. In this study, we have conducted the FDTD modeling and obtained the velocity dispersion curve to identify the dispersive guided wave through F-K analysis. This guided wave can be explained by modal propagation theory and a simple inversion code was developed to obtain the two layer's dielectric constants as well as layer thickness. By inverting the dispersion curve from synthetic modeling data, we could obtain the accurate dielectric constants and layer thickness. Moreover, we could enhance the accuracy by including the higher mode data. We expect this method will be very useful to get the quantitative property of subsurface when the condition is similar.

  • PDF

Dispersive FDTD Modeling of Human Body with High Accuracy and Efficiency (정확하고 효율적인 인체 FDTD 분산 모델링)

  • Ha, Sang-Gyu;Cho, Jea-Hoon;Kim, Hyeong-Dong;Choi, Jae-Hoon;Jung, Kyung-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.108-114
    • /
    • 2012
  • We propose a dispersive finite-difference time domain(FDTD) algorithm suitable for the electromagnetic analysis of the human body. In this work, the dispersion relation of the human body is modeled by a quadratic complex rational function(QCRF), which leads to an accurate and efficient FDTD algorithm. Coefficients(involved in QCRF) for various human tissues are extracted by applying a weighted least square method(WLSM), referred to as the complex-curve fitting technique. We also presents the FDTD formulation for the QCRF-based dispersive model in detail. The QCRFbased dispersive model is significantly accurate and its FDTD implementation is more efficient than the counterpart of the Cole-Cole model. Numerical examples are used to show the validity of the proposed FDTD algorithm.

The Relationship Between Group velocity of Lamb wave $S_0$ Mode and Anisotropy in Laminated Unidirectional CFRP Plates (적층 Unidirectional CFRP 판의 이방성과 Lamb wave의 $S_0$ Mode 군속도의 관계)

  • Lee Jeong-kI;Kim Young H.;Lee Seung Suk;Kim Ho Chul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.272-277
    • /
    • 2004
  • The elastic waves in the plate are dispersive waves with the characteristics of Lamb waves. However, $S_0$ symmetric mode is less dispersive in the frequency region less than first cut-off frequency. And, in anisotropic plates such as CFRP plates, the propagation velocities vary with the direction. So, the wave vector direction to be the phase velocity direction is not accord with the energy flow direction to be the group velocity direction. In this work, the group velocities of the $S_0$ symmetric mode less than the first cut-off frequency was analyzed with the group velocity dispersion curves in unidirectional CFRP plate. And, the group velocity curve obtained by the group velocity dispersion curves are compared with the measured velocities as varied the propagation direction of the Lamb wave. The measured velocities are good agreement with the corrected group velocity curve except near the fiber direction which is called the cusp region. When the propagation direction is not accorded with the principal axis, the direction of the group velocities declines to the fiber direction in the unidirectional CFRP plates. This implies that the energy propagates preferentially toward fiber direction.

  • PDF

Development of Advanced Data Analysis Method Using Harmonic Wavelet Transform for Surface Wave Method (하모닉 웨이브릿 변환을 이용한 표면파 시험을 위한 향상된 데이터 해석기법의 개발)

  • Park, Hyung-Choon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.115-123
    • /
    • 2008
  • The dispersive phase velocity of a wave propagating through multilayered systems such as a soil site is an important parameter and carries valuable information in non-destructive site characterization tests. The dispersive phase velocity of a wave can be determined using the phase spectrum, which is easily evaluated through the cross power spectrum. However, the phase spectrum determined using the cross power spectrum is easily distorted by background noise which always exists in the field. This causes distortion of measured signal and difficulties in the determination of the dispersive phase velocities. In this paper, a new method to evaluate the phase spectrum using the harmonic wavelet transform is proposed and the phase spectrum by the proposed method is applied to the determination of dispersion curve. The proposed method can successfully remove background noise effects. To evaluate the validity of the proposed method, numerical simulations of multi-layered systems were performed. Phase spectrums and dispersion curves determined by the proposed method were found to be in good agreement with the actual phase spectrums and dispersion curves biased by heavy background noise. The comparison manifests the proposed method to be a very useful tool to overcome noise effects.

Circular Polarization Spectroscopy in ^{87}Rb D_2$ line and Laser Frequency Stabilization (^{87}Rb D_2$ 전이선에 대한 원편광 분광 연구 및 레이저 주파수 안정화)

  • 문한섭;김승일;김현아;김중복;이호성
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.317-323
    • /
    • 1995
  • Doppler-free circular polarization spectroscopy in 87Rb Dz line has been carried out by using a diode laser whose linewidth was narrowed by an external cavity, and experimental results were compared with an optical pumping polarization spectroscopy theory. A dispersive spectrum obtained in a weak pump beam was completely fitted to a single cycle optical pumping theory. The laser frequency was locked to a Rb atomic hyperfine transition line without any frequency modulation by using the dispersive curve as an error signal. ignal.

  • PDF

The frequency and magnetic characteristics of YIG with the variation of $Al_2O_3$ additions ($Al_2O_3$조성변화에 따른 YIG의 주파수 및 자기특성)

  • 홍기원;김명호;장경욱;이준웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.787-794
    • /
    • 1995
  • To improvement the magnetic and frequency properties of YIG(Yttrium-Iron Garnet) in microwave region, it is investigated that the effect of $Al^{3+}$ ions on magnetic and frequency characteristics of YIG, using samples of basic YIG composition( $Y_{3}$F $e_{5}$ $O_{l2}$) added with A1$_{2}$ $O_{3}$ from 0 to 2.5 [mol%]. The measurment is conducted mainly for the structural properties and magnetical properties. The structural properties is measured using SEM(Scanning Electro Microscope), EDX(Energy-dispersive X-ray spectrometer) and XRD(X-ray diffraction equipment). The magnetical properties is measured with B-H curve tracer and impedance analyzer. As a result, it is confin-ned that the effect of eddy current loss is minimized while maintaining high saturation flux density of YIG, when YIG is added with 0.5 [mol%] of A1$_{2}$ $O_{3}$.>.>.

  • PDF

Determination of Thin Film Thickness by EDS Analysis and its Modeling (EDS 분석과 모델링에 의한 박막두께 측정 방법에 관한 연구)

  • Yun, Jae-Jin;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.647-653
    • /
    • 2011
  • In this study, a method to measure the thickness of thin film by EDS (energy dispersive spectroscopy) is suggested. We have developed a model which calculates the thickness of thin film from the characteristic x-ray intensity ratio of the elements in thin film and substrate by considering incident electron beam energy, x-ray generation curve, backscattering and absorption of x-ray, take-off angle of x-ray and tilt angle of the sample. We obtained the relation curve between the film thickness measured experimentally and the x-ray intensity ratio of elements. The film thicknesses calculated from the model agrees quite well with those measured experimentally. Therefore, the thin film thickness can be measured rapidly and accurately by using the model developed in this study and the x-ray intensity ratio obtained in EDS analysis.

The Group Velocity of Lamb Wave Generated by the one Source in Unidirectional Laminated Composite Plates (일방향 적층 복합재료 판에서 한 음원에서 발생된 램파의 군속도)

  • Lee Jeong-Ki;Rhee Sang-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • The elastic waves in a plate are dispersive waves due to the characteristics of Lamb waves. However, S0 symmetric mode is less dispersive in the frequency region below the first cut-off frequency. The wave Propagation velocities vary with the direction in anisotropic plates such as Carbon Fiber Reinforced Plastic (CFRP) Plates. The wave vector direction and energy flow vector direction are same in isotropic plates. However, the wave vector direction same as the phase velocity direction is not in accordance with the energy flow direction same as the group velocity direction in anisotropic plates. In this study. the dispersion curves or the phase velocity from anti-symmetric and symmetric Lamb wave dispersion equation are calculated for unidirectional laminated composite plate. Slowness surface is sketched using phase velocity under the first cut-off frequency. The direction and magnitude of group velocity are corrected with this slowness surface. The measured group velocities are in good agreement with the corrected group velocity curve except near the fiber direction zone which is called the cusp region.