• Title/Summary/Keyword: Dispersion-managed optical link

Search Result 41, Processing Time 0.025 seconds

Mid-span Spectral Inversion System Applied with Dispersion Management with Different RDPS Determinations for Half Transmission Link (반 전송 링크의 RDPS 결정 방식이 다른 분산 제어가 적용된 Mid-span Spectral Inversion 시스템)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.331-337
    • /
    • 2022
  • The length of optical fiber in dispersion-managed link combined with optical phase conjugation to compensate for signal distortion caused by chromatic dispersion and nonlinear Kerr effect is a major factor determining the compensation effectiveness. The dispersion-managed link consists of several fiber spans in which standard single mode fiber and dispersion compensating fiber are arranged. In this paper, the compensation effect in the link that changes residual dispersion per span only by adjusting the length of one type of optical fiber, which is different in the first half link and the second half link with respect to optical phase conjugator (OPC), has been investigated. It was confirmed that the best compensation for 960 Gb/s wavelength division multiplexed signal could be obtained in the dispersion-managed link, in which the cumulative dispersion profile is symmetric around the OPC, and the cumulative dispersion amount is all positive in the first half, and all the cumulative dispersion amount is distributed negatively in the second half.

Dispersion-Managed Links for WDM Transmission Arranged by Linearly or Nonlinearly Incremented Residual Dispersion per Span

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.205-211
    • /
    • 2017
  • Combining dispersion-managed optical links with midway optical phase conjugation (OPC) is a possible method of compensating for optical signal distortion due to group velocity dispersion and nonlinear Kerr effects. Although an improvement in the performance of these optical links has been reported, the fixed residual dispersion per span (RDPS) that is typically used restricts the flexibility of link configurations. Thus, in this paper, a flexible dispersion-managed link configuration, comprising artificial distributions of linearly/nonlinearly incremented RDPS, is proposed. Simulations show that a descending distribution of RDPS before the midway OPC, and an ascending distribution of RDPS after the midway OPC, gives the best artificial distribution pattern as the number of fiber spans is increased, regardless of the RDPS incrementation method.

Dispersion-Managed Link Configured with Repetitively Shaped Dispersion Maps and Embedded with Mid-span Spectral Inversion

  • Chung, Jae-Pil;Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.235-241
    • /
    • 2022
  • A dispersion map was proposed to improve the compensation effect of a distorted WDM (wavelength division multiplexed) channel in a dispersion-managed link coupled with optical phase conjugation. The dispersion map is an origin-symmetric structure around the optical phase conjugator in the middle of the transmission path. In addition, the dispersion map has a form in which a constant dispersion accumulation pattern is repeated regularly. Through simulation, we confirmed that the application of the origin-symmetric dispersion map with a repetitively shaped configuration was more effective in compensating for the distorted WDM channel than in the dispersion-managed link with a conventional dispersion map. In addition, we confirmed that the compensation effect could be increased when the cumulative dispersion distribution of the origin-symmetric distribution map had a positive value in the first half section and a negative value in the second half section. Further, we observed that as the number of repeated dispersion accumulation patterns increased, the residual dispersion per span should also be increased.

Compensation for the Distorted WDM Channels through the Dispersion-managed Optical Links with Non-midway Optical Phase Conjugator (Non-midway 광 위상 공액기를 갖는 분산 제어 전송 링크를 통한 WDM 채널의 왜곡 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.595-600
    • /
    • 2015
  • The implementation possibility of the flexible optical network configuration using the non-midway optical phase conjugator (OPC) in the dispersion-managed (DM) optical link for wavelength division multiplexed (WDM) transmission is demonstrated in this paper. It is confirmed that the implementation possibility of flexible link configuration is more increased, as number of fiber spans is more bigger and the residual dispersion per span (RDPS) is more large. It is also confirmed that the non-midway OPC link, in which RDPS of the latter half transmission section (after OPC) is decided by the averaged RDPS of the former half transmission section (before OPC), has more advantage for the flexible network configuration.

Compensation for Distorted WDM Signals by Periodic-shaped Dispersion Map and Non-midway Optical Phase Conjugator (주기적 구조의 분산 맵과 Non-midway 광 위상 공액기에 의한 왜곡된 WDM 신호의 보상)

  • Kweon, Soon-Nyu;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.22-28
    • /
    • 2022
  • In order to install ultra wide band and ultra long-haul transmission link based on standard single mode fiber, optical signal distortion due to chromatic dispersion and nonlinear Kerr effect must to be compensated. In this paper, optical link consisted of dispersion management and optical phase conjugation is proposed for compensation of the distorted wavelength division multiplexed (WDM) channels. Dispersion map profile in the proposed dispersion-managed link is configured by periodic repetitive shape, and optical phase conjugator is placed at various position including the midway of total transmission length. It is confirmed from simulation results that when the residual dispersion per span (RDPS) selected in the proposed dispersion-managed link to be large, the compensation of distorted WDM channels in the non-midway OPC system is more improved than the conventional dispersion-managed link.

Compensation of Distorted WDM Channels Depending on Averaged RDPS in Dispersion-managed Link with Random Distribution of SMF Lengths and RDPS (SMF 길이와 RDPS가 랜덤하게 분포하는 분산 제어 링크에서 평균 RDPS 값에 따른 왜곡된 WDM 채널의 보상)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.351-353
    • /
    • 2018
  • The compensation characteristics are investigated as a function of the averaged residual dispersion per span (RDPS), which is different in each half transmission section, in dispersion-managed optical transmission links with a randomly distributed single mode fiber lengths and RDPS.

  • PDF

Dispersion-Managed Link with Different Numbers of Fiber Spans and Asymmetric Distribution of RDPS (중계 구간의 개수가 다르고 RDPS가 비대칭인 분산 제어 링크)

  • Hong, Sung-Hwa;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.570-576
    • /
    • 2019
  • The configuration of dispersion-managed optical link with optical phase conjugator, which is placed at the non-midway of total transmission length, is proposed for implementing of the flexible optical network. The optical phase conjugator is located between the former half transmission section and the latter half transmission section, which are consisted of 6 fiber spans and 14 fiber spans respectively, and the averaged RDPS of each half transmission section are inconsistence. And, the artificial distribution of each fiber span's RDPS, which are gradually increased/decreased as the span numbers are increased, is adopted to compensate for the distorted wavelength division multiplexed channels. From the simulation results, it is confirmed that the compensation in dispersion-managed link configured by a special distribution pattern among 16 proposed patterns, in which the RDPS of each fiber spans are gradually decreased/increased in the former/latter half section with the small deviation, is suitable to compensate for the distorted wavelength division multiplexed channels.

Dispersion-managed Link Consisted of the Randomly-distributed Optical Fibers Combined with Midway Optical Phase Conjugator (Midway OPC를 갖는 광섬유의 길이가 랜덤하게 분포하는 분산 제어 링크)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.630-632
    • /
    • 2018
  • The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul (50 fiber spans ${\times}$ 80 km) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) for implementing of the flexible link configuration are investigated.

  • PDF

Net Residual Dispersion in Inline Dispersion Managed Optical Transmission Link (Inline 분산 제어 광전송 링크에서 전체 잉여 분산)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • A configuration scheme of optical link effectively compensating chromatic dispersion and nonlinear effects accumulated in optical link with single mode fibers (SMFs) is proposed. The proposed optical link configuration consist of optical phase conjugator (OPC) placed at middle of total transmission length and inline dispersion management (DM) as a role of compensating cumulated in each optical repeater of SMF by dispersion compensating fiber (DCF). Net residual dispersion (NRD) of this optical link is designed to be controlled through precompensation and postcompensating. The precompensation and postcompensation are designed to be determined by DCF after transmitter and before receiver, respectively. It is confirmed that optical link configuration with symmetric dispersion map with respect to OPC, which is implemented by controlling NRD through both precompensation and postcompensation, is better to be effective and adaptive than other configuration with NRD controlled by only precompensation or postcompensation.

  • PDF

Dispersion Managed Optical Transmission Links with an Artificial Distribution of the SMF Length and Residual Dispersion per Span

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • Dispersion management (DM), optical phase conjugation (OPC), and the combination of DM and OPC are promising techniques to compensate for optical signal distortion due to group velocity dispersion and nonlinear Kerr effects. The system performance improvement in DM links combined with OPC has been reported; however, the fixed residual dispersion per span (RDPS) usually used in these links restricts the flexibility of link configuration. Thus, in this paper, a flexible optical link configuration with artificially distributed single-mode fiber (SMF) lengths and RDPS in the combination of DM and OPC is proposed. Simulation results show that the best artificial distribution pattern is the gradually descending distribution of SMF lengths and the gradually ascending distribution of RDPS, as the number of fiber spans is increased, regardless of the average RDPS, the optimal net residual dispersion, and the dispersion coefficient of the dispersion compensating fiber.