Midway OPC를 갖는 광섬유의 길이가 랜덤하게 분포하는 분산 제어 링크

이성렬

목포해양대학교

Dispersion-managed Link Consisted of the Randomly-distributed Optical Fibers Combined with Midway Optical Phase Conjugator

Seong-Real Lee

Mokpo National Maritime University

E-mail: reallee@mmu.ac.kr

요 약

장거리 (50 fiber spans × 80 km) 전송 링크의 융통적 구성을 위해 단일 모드 광섬유 (SMF; single mode fiber)의 길이와 중계 구간 당 잉여 분산 (RDPS; residual dispersion per span)이 랜덤하게 분포하는 링크에서 광 위상 공액과 결합된 분산 제어 (DM; dispersion management)를 통한 왜곡된 WDM 채널의 보상 특성을 살펴보았다.

ABSTRACT

The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul (50 fiber spans \times 80 km) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) for implementing of the flexible link configuration are investigated.

키워드

Dispersion Management, Optical Phase Conjugator, Residual dispersion per span, Net residual dispersion,
Random distribution

1. 서 론

단일 모드 광섬유 (SMF; single mode fiber)가 갖는 색 분산 (chromatic dispersion)과 비선형성 (nonlinearity) 효과를 극복하는 기술들 중 대표적인 것으로 분산 제어 (DM; dispersion management) [1]와 광 위상 공액 (optical phase conjugation)[2], 또한 이 둘을 결합한 기술이 있다 [3].

본 본문의 저자는 그동안의 연구를 통해 광 신호 보상을 위해 DM과 OPC를 적용하는 경우 링크 구 조가 고정되어야 한다는 기술적 한계를 중계 구간 (fiber span)을 구성하는 SMF 길이와 중계 구간 당 잉여 분산 (RDPS; residual dispersion per span)을 랜덤하게 분포시킴으로써 극복될 수 있다는 것을 확인하였다[4].

본 연구에서는 SMF 길이와 RDPS가 랜덤하게 분 포된 중계 구간의 개수가 50 개(즉 50 fiber spans)인 전체 전송 링크 중간에 광 위상 공액기 (OPC; optical phase conjugator)가 적용된 전송 링크를 통해 40 Gbps ×24 채널 WDM 신호를 전송하는 경우의 보상 특성을 SMF 길이와 RDPS 분포가 균일한 전통적인 링크에서의 보상 특성과의 비교를 통해 분석해보고자 한다.

II. 광전송 링크와 시스템의 모델링

그림 1은 24 채널 × 40 Gbps의 WDM 전송 시스템과 이를 위한 광전송 링크의 구조를 나타 낸 것이다. 그림 1의 24개 송신기(Tx), 수신기 (Rx), 그리고 전체 전송로 중간에 위치한 OPC는 저자의 선행 연구인 참고 문헌 [4]과 동일하게 모델링하였다.

랜덤하게 분포하는 SMF의 길이가 현재 사용되

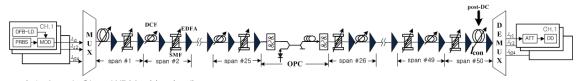


그림 1. 24×40 Gbps WDM 전송 시스템 구조 Fig. 1 Configuration of 24×40 Gbps WDM transmission system.

고 있는 범위인 50 km 이상에서 110 km 이하이어야 하고, 각 전송 반 구획 (half transmission section)에서의 전체 평균 길이는 80 km가 되도록각 중계 구간의 SMF의 랜덤 길이가 선택되도록하였다. 그리고 각 중계 구간의 RDPS는 0 ps/nm부터 400 ps/nm 사이의 값이어야 하고, 각 전송반 구획에서의 전체 평균 값은 200 ps/nm가 되도록 각 중계 구간의 RDPS가 선택되도록 설계하였다.

각 전송 반 구획의 각각의 중계 구간의 SMF 의 길이를 랜덤하게 분포시킨 방법부터 좀 더구체적으로 살펴보면, 선택될 수 있는 SMF 길이의 최대치와 최소치의 편차 (즉 60 km)를 각 전송 반 구획의 중계 구간 개수에서 하나를 뺀 24의 반인 12로 나누어서 길이 변화분을 얻고, 이변화분에 1부터 12까지의 가중치를 곱한 후 전제 조건인 전체 평균치 80 km에서 12개의 (가중치×변화분) 만큼 더하고 뺀 24 종류의 SMF 길이와 80 km로 총 25 종류의 SMF 길이들을 랜덤하게 분포하도록 하였다.

본 논문에서는 그림 1에 보인 바와 같이 마지막 중계 구간 (span 50)의 DCF는 각각 각 전송 반 구 획에서의 전체 잉여 분산 (NRD; net residual dispersion)을 조절하는 역할을 수행하도록 하였 다. 따라서 midway OPC 이전까지의 두 번째부 터 24번째의 중계 구간, midway OPC 이후부터 의 25번째부터 49번째 중계 구간의 총 48개 구간 에서만 RDPS가 랜덤하게 분포하도록 설계하였 다. 즉 선택될 수 있는 RDPS의 최대치와 최소치 의 편차 (즉 400 ps/nm)를 각 전송 반 구획의 중 계 구간 개수에서 하나를 뺀 24의 반인 12로 나누 어서 RDPS 변화분을 얻고, 이 변화분에 1부터 12 까지의 가중치를 곱한 후 전제 조건인 전체 평균 치 200 ps/nm에서 12개의 (가중치×변화분) 만큼 더하고 뺀 24 종류의 RDPS들을 랜덤하게 분포하 도록 하였다.

각 중계 구간의 랜덤한 RDPS는 랜덤하게 선택된 SMF 길이 (l_{SMF}) 와 아래 식 (1)과 같은 관계를 통해 DCF의 길이 (l_{DCF}) 로써 나타나게 된다.

$$l_{DCF} = \frac{RDPS + (l_{SMF} \times D_{SMF})}{|D_{DCF}|} \tag{1}$$

WDM 채널들의 효과적인 전송을 위하여 각 전송 반 구획의 NRD를 이 값보다 낮추어 주거 나 제거해 주는 역할을 누군가는 수행해야 한다. 본 연구에서는 그림 1에 보인 바와 같이 마지막 중계 구간의 DCF들이 원하는 전반 전송 구획과 후반 전송 구획의 NRD 값에 따라 각각 길이 (l_{post}) 가 변동되도록 설계하였다. 즉 이 두 DCF의 길이 변동에 따라 각 전송 반 구획에서의 NRD가 조절되도록 하였다.

본 연구의 목적인 SMF 길이와 RDPS가 랜덤으로 분포하는 50개의 중계 구간으로 이루어진전체 링크를 전송하는 WDM 신호의 왜곡 보상정도를 효과적으로 분석하기 위하여 SMF 길이를 80 km, RDPS를 200 ps/nm로 균일하게 설계한 그림 1의 링크 구조를 통해 전송되는 WDM 채널의 보상 정도와 비교 분석하였다. 각 경우WDM 채널의 수신 품질 평가는 눈 열림 패널티(EOP; eye opening penalty)를 통해 수행하였다.

Ⅲ. 시뮬레이션 결과 및 검토

광통신 시스템에서 수신 성능 기준은 주로 1 dB EOP를 사용한다. 이는 10⁻¹² 비트 에러율 (BER; bit error rate)에 상응하는 값이다. 따라서 본 연구에서도 1 dB EOP를 기준으로 성능을 분석하도록 한다.

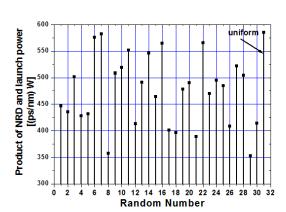


그림 2. NRD와 입사 전력의 곱

그림 2는 WDM 채널의 입사 전력과 1 dB EOP를 얻을 수 있는 NRD 유효 범위의 곱 (즉 면적, 또는 NRD와 입사 전력의 곱)을 나타낸 것으로, 본 연구에서 수행한 30가지 랜덤 분포 패턴 각각에서의 곱 (그림 2 그래프의 x축의 random number 1부터 30까지)과 균일 분포에서의 곱 (그림 2 그래프의 x축의 random number 31)을 동시

에 나타낸 것이다. 그림 2의 결과를 살펴보면, SMF 길이와 RDPS가 균일하게 분포된 링크에서 1 dB EOP 이하를 얻을 수 있는 NRD와 입사 전력의 곱에 버금가는 랜덤 분포 패턴들은 30가지 경우 중 단지 2개 (랜덤 경우 6, 7)뿐임을 알 수 있다.

하지만 이러한 결과는 모든 입사 전력을 고려 대상으로 한 경우의 결과로써 WDM 전송에서의 입사 전력 범위를 0 dBm 이하로 국한한다면 SMF 길이와 RDPS 분포가 랜덤한 링크를 설계 하는데 있어 입사 전력에 따른 NRD 범위의 선 택 폭이 10 ps/nm와 -10 ps/nm보다 넓어지기 때문에 좀 더 융통성을 확보할 수 있을 것이다.

참고문헌

- [1] X. Xiao, S. Gao, Y. Tian, and C. Yang, "Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems," *J. Lightwave Technol.*, Vol. 24, No. 5, pp. 2038~2044, 2006.
- [2] S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, "Long-haul DWDM transmission systems employing optical phase conjugation", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No. 4, pp. 505-520, 2006.
- [3] P. Minzioni and A. Schiffini, "Unifying theory of compensation techniques for intrachannel nonlinear effects," *Optical Express*, Vol. 13, No. 21, pp. 8460-8468, 2005.
- [4] J. P. Chung and S. R. Lee, "Pseudo-symmetric link configuration in dispersion-managed WDM transmission system with optical phase conjugator," *Information*, Vol. 17, No. 11B, pp. 5963~5968, Nov. 2014.