DOI QR코드

DOI QR Code

Dispersion-Managed Link with Different Numbers of Fiber Spans and Asymmetric Distribution of RDPS

중계 구간의 개수가 다르고 RDPS가 비대칭인 분산 제어 링크

  • Hong, Sung-Hwa (Division of Navigational Information System, Mokpo National Maritime University) ;
  • Lee, Seong-Real (Division of Navigational Information System, Mokpo National Maritime University)
  • 홍성화 (목포해양대학교 항해정보시스템학부) ;
  • 이성렬 (목포해양대학교 항해정보시스템학부)
  • Received : 2019.11.28
  • Accepted : 2019.12.21
  • Published : 2019.12.30

Abstract

The configuration of dispersion-managed optical link with optical phase conjugator, which is placed at the non-midway of total transmission length, is proposed for implementing of the flexible optical network. The optical phase conjugator is located between the former half transmission section and the latter half transmission section, which are consisted of 6 fiber spans and 14 fiber spans respectively, and the averaged RDPS of each half transmission section are inconsistence. And, the artificial distribution of each fiber span's RDPS, which are gradually increased/decreased as the span numbers are increased, is adopted to compensate for the distorted wavelength division multiplexed channels. From the simulation results, it is confirmed that the compensation in dispersion-managed link configured by a special distribution pattern among 16 proposed patterns, in which the RDPS of each fiber spans are gradually decreased/increased in the former/latter half section with the small deviation, is suitable to compensate for the distorted wavelength division multiplexed channels.

광 네트워크의 융통적 구성을 위해 전체 전송로 중간이 아닌 위치에 존재하는 광 위상 공액기를 갖는 분산 제어 링크를 제안하였다. 제안하는 분산 제어 링크에서 광 위상 공액기는 6개 중계 구간으로 구성되는 전반 전송 구획과 14개로 구성되는 후반 전송 구획 사이에 존재하고, 각 전송 반 구획에서의 평균 중계 구간 당 잉여 분산 (RDPS; residual dispersion per span)이 서로 다른 비대칭 구조이다. 또한 파장 분할 다중 채널의 왜곡 보상을 위하여 각 중계 구간마다 실제 RDPS를 점진적으로 증가/감소시키는 인위적 분포 구조를 채택하였다. 시뮬레이션 결과 제안된 16개의 비대칭 분포 제어 링크 구조 중 인접한 중계 구간 간 RDPS 편차를 적게 하여 전반 전송 구획에서는 중계 구간의 실제 RDPS를 점진적으로 감소시키고 후반 전송 구획에서는 중계 구간의 실제 RDPS를 점진적으로 증가시키는 구조가 왜곡된 파장 분할 다중 채널의 보상에 적합한 것을 확인하였다.

Keywords

References

  1. S. Waiyapot, S. K. Turitsyn, and V. K. Mezentsev, "Optical regeneration at 40 Gb/s in dispersion-managed transmission lines with in-line synchronous modulators," Journal of Lightwave Technology, Vol. 20, No. 12, pp. 2220-2228, Dec. 2002. https://doi.org/10.1109/JLT.2002.806750
  2. X. Liu, Y. Qiao, and Y. Ji, "Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems," Optics Communications, Vol. 283, pp. 2749-2753, 2010. https://doi.org/10.1016/j.optcom.2010.03.015
  3. M. D. Pelusi, "WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers," IEEE Photonics Technology Letters, Vol. 25, No. 1, pp. 71-74, 2013. https://doi.org/10.1109/LPT.2012.2226440
  4. M. Morshed, A. J. Lowery, and L. B. Du, "Improving performance of optical conjugation by splitting the nonlinear element," Optics Express, vol. 21, pp. 4567-4577, 2013. https://doi.org/10.1364/OE.21.004567
  5. I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, "Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in $5{\times}28$-GBd PDM 16-QAM signal transmission," Journal of Lightwave Technology, vol. 33, no. 9, pp. 1821-1827, May 2015. https://doi.org/10.1109/JLT.2015.2393152
  6. M. Morshed, L. B. Du, and A. J. Lowery, "Mid-span spectral inversion for coherent optical OFDM systems: fundamental limits to performance," Journal of Lightwave Technology, vol. 31, no. 1, pp. 58-66, Jan., 2013. https://doi.org/10.1109/JLT.2012.2227942
  7. S. L. Jansen, S. Spälter, G.-D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, "16x40 Gb/s over 800 km of SSMF using mid-link spectral inversion," IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1763-1765, July 2004. https://doi.org/10.1109/LPT.2004.828546
  8. X. Xiao, C. Yang, S. Gao, and Y. Tian, "Partial compensation of Kerr nonlinearities by optical phase conjugation in optical fiber transmission systems without power symmetry," Optical Communications, vol. 265, no. 1, pp. 326-330. 2016.
  9. A. Chowdhury and R. J. Essiambre, "Optical phase conjugation and pseudolinear transmission," Optics Letters, vol. 29, no. 10, pp. 1105-1107, 2014. https://doi.org/10.1364/OL.29.001105
  10. S. R. Lee, "Dispersion-managed links formed of SMFs and DCFs with irregular dispersion coefficients and span lengths," Journal of Information Communication Convergence Engineering, vol.16, no.2, pp.67-71, June, 2018. https://doi.org/10.6109/JICCE.2018.16.2.67
  11. S. R. Lee, "Compensation for the distorted WDM channels in the long-haul transmission link with the randomly distributed SMF lengths and RDPS," Journal of Advanced Navigation Technology, Vol. 19, No. 4, pp. 323-329, Aug. 2015. https://doi.org/10.12673/jant.2015.19.4.323
  12. S. R. Lee, "Dispersion-managed optical links combined with asymmetrical optical phase conjugation for compensating for distorted WDM signals," Journal of Information and Communication Convergence Engineering, Vol. 14, No. 2, pp. 71-77, Jun. 2016. https://doi.org/10.6109/jicce.2016.14.2.071
  13. H. B. Yim and S..R. Lee, "Compensation for the distorted WDM signals through dispersion-managed optical links combined with non-midway optical phase conjugation," International Journal of Control and Automation, Vol. 11,
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Francisco:CA, Academic Press, 2001.
  15. N. Kikuchi and S. Sasaki, "Analytical evaluation technique of self-phase modulation effect on the performance of cascaded optical amplifier systems," Journal of Lightwave Technology, Vol. 13, No. 5, pp. 868-878. 1995. https://doi.org/10.1109/50.387804