• Title/Summary/Keyword: Dispersion media

Search Result 163, Processing Time 0.024 seconds

Dispersion Polymerization of Acrylamide in Methanol/Water Media

  • Lee, Ki-Chang;Lee, Seung-Eun;Song, Bong-Keun
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.140-144
    • /
    • 2002
  • Dispersion polymerization of acrylamide was carried out in the media of methyl alcohol/$H_2O$ mixtures using hydroxypropyl cellulose and ammonium persulfate as steric stabilizer and initiator, respectively. The effects of concentrations of initiator and steric stabilizer, amount of monomer, polymerization temperature, methyl alcohol/$H_2O$ ratio, and purification of monomer and nitrogen purge on the particle size of the latices and molecular weight of the polymers were investigated. The average particle diameter increased with increasing concentration of initiator, water content in methyl alcohol/$H_2O$ media, and polymerization temperature, but decreased with monomer and stabilizer concentrations. The viscosity average molecular weight increased with increasing concentrations of monomer, steric stabilizer, and water content in dispersion media, but decreased with initiator concentration and polymerization temperature. The PAM polymers prepared with the purified monomer and the nitrogen purging before the reaction showed the highest molecular weight.

New Weighting Factor of 2D Isotropic-Dispersion Finite Difference Time Domain(ID-FDTD) Algorithm

  • Zhao, Meng;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.4
    • /
    • pp.139-143
    • /
    • 2008
  • In this paper, a new scheme to calculate the weighting factor of the 2-D isotropic-dispersion finite difference time domain(ID-FDTD) is proposed. The weighting factor in [1] was formulated in free space, so that it may not be optimal in dielectric media. Therefore, the weighting factor was reformulated by considering the material properties and using the least mean square method. As a result, a minimum numerical dispersion error for any dielectric media is guaranteed.

Volatiles Composition from Aerial Parts of the Insect-Pollinated and the Promising Medicinal Plant Spiraea hypericifolia L. Growing Wild in Northern Kazakhstan

  • Kirillov, Vitaliy;Stikhareva, Tamara;Atazhanova, Gayane;Ercisli, Sezai;Makubayeva, Aigerim;Krekova, Yana;Rakhimzhanov, Alimzhan;Adekenov, Sergazy
    • Natural Product Sciences
    • /
    • v.27 no.1
    • /
    • pp.36-44
    • /
    • 2021
  • The essential oils from the aerial parts (leaves and flowers) of Spiraea hypericifolia L. (Rosaceae), collected in Northern Kazakhstan, were obtained by distillation in two dispersion media (distilled water and 15% NaCl solution). The chemical composition of the essential oils was evaluated by GC-MS for the first time. The yield of the essential oil was 0.04% (in fresh growth conditions) and 0.02% (in dry growth conditions) respectively regardless of which dispersion media (H2O or 15% NaCl solution) was used at the isolation of essential oil. The main compounds were aliphatic hydrocarbons (alkanes) (40.6-53.2%), aldehydes (8.4-17.4%), diterpenoids (9.1-16.7%) and ketones (6.2-8.7%). Content of monoterpenoids was depended on dispersion media (2.2-3.6% where H2O was dispersion media and 8.4-8.5% where 15% NaCl solution was dispersion media). n-Heneicosane (17.4-34.1%) and n-tricosane (14.3-19.5%) were the main constituents of the essential oil of S. hypericifolia. There were many insects from different classes in S. hypericifolia at flowering. Important components such as α-methylene-γ-butyrolactone (0.8-2.8%), benzyl cyanide (0.7-1.1%), β-damascenone (1.2-2.9%), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (1.8-2.7%), β-ionone (0.5-1.8%) and others were detected in small amounts.

First-Order Mass Transfer in a Vortex-Dispersion Zone of an Axisymmetric Groove: Laboratory and Numerical Experiments

  • Kim, Young-Woo;Kang, Ki-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.651-657
    • /
    • 2010
  • Solute transport through a groove is affected by its vortices. Our laboratory and numerical experiments of dye transport through a single axisymmetric groove reveal evidence of enhanced spreading and mixing by the vortex, i.e., a new kind of dispersion called here the vortex dispersion. The uptake and release of contaminants by vortices in porous media is affected by the flow Reynolds number. The larger the flow Reynolds number, the larger is the vortex dispersion, and the larger is the mass-transfer rate between the mobile zone and the vortex. The long known dependence of the mass-transfer rate between the mobile and "immobile" zones in porous media on flow velocity can be explained by the presence of vortices in the "immobile" zone and their uptake and release of contaminants.

Two Dimensional Explicit ID(Isotropic-Dispersion)-FDTD Scheme for Lossy Media (손실 매질에 대한 2차원 등방 시간 영역 유한 차분법)

  • Koh, Il-Suek;Kim, Hyun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.664-673
    • /
    • 2007
  • In this paper, the ID-FDTD scheme, proposed in Reference [1] and [2], is modified and completely analyzed. The modifications are composed of three parts: rigorous stability analysis, dispersion relation for linear lossy media, and new scaling factors for permittivity, permeability, and conductivity. As a result, it is shown that the proposed scheme has lower dispersion error in spite of larger time step than the conventional standard scheme of Reference [3]. To validate the scheme, there are presented two scattering examples, which show excellent results.

Hydraulic Characteristics of Anaerobic Fluidized Bed Bioreactor (혐기성 유동상 반응기의 수리학적 특성)

  • Seok, Jong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Tracer experiments were carried out on two laboratory modes, "without media mode" and "with media mode", to examine the hydraulic characteristics of the anaerobic fluidized bed bioreactor (AFBR). For both configurations, a formula was derived for the hydraulics and data interpretation to obtain the actual characteristics of the reactor. The dispersion model is based on the assumption that carriers are non-reacting and the dispersion coefficient is constant. The model represents the one-dimensional unsteady-state concentration distribution of the non-reacting tracer in the reactors. The experimental results showed that the media increased the mixing conditions in the reactor considerably. For the reactor without media, in the range tested, the dispersion coefficient was at least an order of magnitude smaller than that of the reactor with media. Advective transport dominates and the flow pattern approaches the plug flow reactor (PFR) regime. The dispersion coefficient increased significantly as us, the superficial liquid velocity, was increased proportionally to 0.82cm/s. On the other hand, for the reactor with media, the flow pattern was in between a PFR and a completely mixed flow reactor (CMFR) regime, and the dispersion coefficient was saturated at us=0.41cm/s, remaining relatively constant, even at us=0.82cm/s. The dispersion coefficient depends strongly on the liquid Reynolds number (Re) or the particle Reynolds number (Rep) over the range tested.

Permittivities of the Carbon Nano Fiber/Epoxy Composite According to the Dispersion Methods (분산 방법에 따른 카본 나노 섬유/에폭시 복합재료의 유전율)

  • 김태욱;김진봉;공진우;정재한;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.55-58
    • /
    • 2003
  • This paper presents a study on the permittivities of the carbon nano fiber/epoxy composite at microwave frequency. The permittivities of composite materials depend on the concentrations and the dispersion methods of the carbon nano fibers. The experimental values of complex permittivities were obtained for the specimen made by dispersion method using ethyl alcohol as dispersion media and compared with the results by simple mechanical mixing method.

  • PDF

Dispersion Polymerization of Acrylamide in t-Butyl Alcohol/Water Media

  • Lee, Ki-Chang;Lee, Seung-Eun;Park, Yoo-Jin;Song, Bong-Keun
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.213-218
    • /
    • 2004
  • We have performed dispersion polymerization of acrylamide in tert-butyl alcohol/water mixture-using hydroxypropyl cellulose and ammonium persulfate as the stabilizer and the initiator, respectively - to study the effects that the concentration of monomer, initiator, and stabilizer, the tert-butyl alcohol/water ratios as polymerization media, and the reaction temperature have on, among other things, the polymerization kinetics, particle sizes, and molecular weights. The polymerization rate increased upon increasing the concentration of the monomer, initiator, and stabilizer, the water content in the tert-butyl alcohol/water media, and the polymerization temperature. The average particle size of the lattices increased upon increasing the concentration of initiator, the polymerization temperature, and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing the concentration of monomer and stabilizer. The viscosity-average molecular weight increased upon increasing the concentration of monomer and stabilizer and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing both the concentration of initiator and the polymerization temperature.

2D Crank-Nicolson FDTD Method Based on Isotropic-Dispersion Finite Difference Equation for Lossy Media (손실 매질에 대한 Isotropic-Dispersion 유한 차분식의 2D Crank-Nicolson FDTD 기법)

  • Kim, Hyun;Koh, Il-Suek;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.805-814
    • /
    • 2010
  • The Crank-Nicolson isotropic-dispersion finite difference time domain(CN ID-FDTD) scheme is proposed based on isotropic-dispersion finite difference(ID-FD) $equation^{[1],[2]}$. The dispersion relation of CN ID-FDTD is derived for lossy media by solving the eigenvalue problem of iteration matrix in spatial spectral domain, in addition, the weighting factors and scaling factors of the CN ID-FDTD scheme are presented for low dispersion error. The CN ID-FDTD scheme makes the dispersion error drastically reduced and shows accurate numerical results compared to the conventional Crank-Nicolson FDTD method.

Dispersion Stability of Rutile TiO2Powder Obtained by Homogeneous Precipitation Process at Low Temperature (저온균일침전법으로 제조된 루틸상 TiO2분말의 분산 안정성)

  • 배현숙;박순동;김흥희;이창규;김선재
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • Dispersion stability of nano-sized rutile TiO$_2$powder with acicular typed primary particle produced by homogeneous precipitation process at low temperatures was studied in aqueous and non-aqueous media in the presence of various electrolytes. The zeta potential measurements have shown that the addition of electrolytes to aqueous and non-aqueous dispersion media leads to charge reversal on TiO$_2$particle surface. The electrostatic repulsive forces acting on between TiO$_2$particles dispersed in non-aqueous media were found to be significantly greater than that in aqueous media, which relate closely to the physical properties of the organic solvents, such as viscosities and dielectric constants. The pH values, the concentration of electrolytes and the valence of the ions have changed greatly the surface potential of TiO$_2$ particles and have governed the dispersion behavior of TiO$_2$particles virtually.