Dispersion Polymerization of Acrylamide in Methanol/Water Media

  • Lee, Ki-Chang (Department of Polymer Sci. & Eng., Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Seung-Eun (Department of Polymer Sci. & Eng., Engineering Research Institute, Gyeongsang National University) ;
  • Song, Bong-Keun (Pulp and Paper Research Lab., Korea Institute of Chemical Technology)
  • Published : 2002.06.01

Abstract

Dispersion polymerization of acrylamide was carried out in the media of methyl alcohol/$H_2O$ mixtures using hydroxypropyl cellulose and ammonium persulfate as steric stabilizer and initiator, respectively. The effects of concentrations of initiator and steric stabilizer, amount of monomer, polymerization temperature, methyl alcohol/$H_2O$ ratio, and purification of monomer and nitrogen purge on the particle size of the latices and molecular weight of the polymers were investigated. The average particle diameter increased with increasing concentration of initiator, water content in methyl alcohol/$H_2O$ media, and polymerization temperature, but decreased with monomer and stabilizer concentrations. The viscosity average molecular weight increased with increasing concentrations of monomer, steric stabilizer, and water content in dispersion media, but decreased with initiator concentration and polymerization temperature. The PAM polymers prepared with the purified monomer and the nitrogen purging before the reaction showed the highest molecular weight.

Keywords

References

  1. Br. Polym. J. v.14 Y. Almog;S. Reich;M. Levy https://doi.org/10.1002/pi.4980140402
  2. J. Appl. Polym. Sci. v.50 A. Tuncel;R. Kahraman;E. Piskin https://doi.org/10.1002/app.1993.070500212
  3. Can. J. Chem. v.63 K. P. Lok;C. K. Ober https://doi.org/10.1139/v85-033
  4. J. Polym. Sci. Polym. Chem. Ed. v.25 C. K. Ober;H. L. Hair https://doi.org/10.1002/pola.1987.080250516
  5. Macromolecules v.20 C. K. Ober;K. P. Lok https://doi.org/10.1021/ma00168a007
  6. J. Polym. Sci. Polym. Chem. Ed. v.28 A. J. Paine https://doi.org/10.1002/pola.1990.080280921
  7. J. Polym. Sci. Polym. Chem. Ed. v.31 S. Shen;E. D. Sudal;M. S. El-Aasser https://doi.org/10.1002/pola.1993.080310606
  8. J. Polym. Sci. Polym. Chem. Ed. v.55 R. Hu;V. L. Dimonie;E. D. Sudal;M. S. El-Aasser
  9. J. Polym. Sci. Polym. Chem. Ed. v.33 J. M. Saenz;J. M. Asua https://doi.org/10.1002/pola.1995.080330913
  10. J. Polym. Sci. Polym. Chem. Ed. v.33 D. Horak;F. Svec;J. M. J. Frechet https://doi.org/10.1002/pola.1995.080331405
  11. J. Polym. Sci. Polym. Chem. Ed. v.24 C. M. Tseng;Y. Y. Lu;M. S. El-Aasser;J. W. Vanderhoff https://doi.org/10.1002/pola.1986.080241126
  12. Macromolecules v.23 A. J. Paine;W. Luymes;J. McNulty https://doi.org/10.1021/ma00214a012
  13. Korea Polym. J. v.6 no.5 K. C. Lee;H. J. Seo;J. M. Park
  14. J. Colloid Interf. Sci. v.138 A. J. Paine https://doi.org/10.1016/0021-9797(90)90191-P
  15. Colloid Surf. v.3 T. Corner https://doi.org/10.1016/0166-6622(81)80072-8
  16. Langmuir v.13 no.8 B. Bay;B. M. Mandal https://doi.org/10.1021/la9605044
  17. Dispersion Polymerization in Organ Media Dispersion Polymerization in Organ Media K. E. J. Barrett(ed.)
  18. J. Coatings Tech. v.54 no.693 A. J. Backhouse
  19. J. Polym. Sci. Polym. Chem. Ed. v.32 K. C. Lee;M. A. Winnik;T. C. Jao https://doi.org/10.1002/pola.1994.080321215
  20. Polymer(Korea) v.21 K. C. Lee;N. J. Heo;S. E. Lee;K. S. Kim;Y. C. Kim
  21. J. Polym. Sci. Polym. Chem. Ed. v.38 D. Horak;M. Krystufek;J. Spevacek https://doi.org/10.1002/(SICI)1099-0518(20000201)38:3<653::AID-POLA29>3.0.CO;2-P
  22. Makromol. Chem. v.181 J. Klein;K. P. Conrad https://doi.org/10.1002/macp.1980.021810120
  23. Macromolecules v.23 A. J. Paine https://doi.org/10.1021/ma00214a013
  24. CRC Handbook of Solubility Parameters and Other Cohesion Parameters CRC Handbook of Solubility Parameters and Other Cohesion Parameters A. F. M. Barton