Dispersion Polymerization of Acrylamide in t-Butyl Alcohol/Water Media

  • Lee, Ki-Chang (Department of Polymer Sci. & Eng., Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Seung-Eun (Department of Polymer Sci. & Eng., Engineering Research Institute, Gyeongsang National University) ;
  • Park, Yoo-Jin (Department of Polymer Sci. & Eng., Engineering Research Institute, Gyeongsang National University) ;
  • Song, Bong-Keun (Pulp and Paper Research Lab., Korea Institute of Chemical Technology)
  • Published : 2004.04.01

Abstract

We have performed dispersion polymerization of acrylamide in tert-butyl alcohol/water mixture-using hydroxypropyl cellulose and ammonium persulfate as the stabilizer and the initiator, respectively - to study the effects that the concentration of monomer, initiator, and stabilizer, the tert-butyl alcohol/water ratios as polymerization media, and the reaction temperature have on, among other things, the polymerization kinetics, particle sizes, and molecular weights. The polymerization rate increased upon increasing the concentration of the monomer, initiator, and stabilizer, the water content in the tert-butyl alcohol/water media, and the polymerization temperature. The average particle size of the lattices increased upon increasing the concentration of initiator, the polymerization temperature, and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing the concentration of monomer and stabilizer. The viscosity-average molecular weight increased upon increasing the concentration of monomer and stabilizer and the water content in the tert-butyl alcohol/water media, but it decreased upon increasing both the concentration of initiator and the polymerization temperature.

Keywords

References

  1. Br. Polym. J. v.14 Y.Almog;S.Reich;M.Levy https://doi.org/10.1002/pi.4980140402
  2. J. Polym. Sci.;Polym. Chem. Ed. v.50 A.Tuncel;R.Kahraman;E.Piskin
  3. Can. J. Chem. v.63 K.P.Lok;C.K.Ober https://doi.org/10.1139/v85-033
  4. J. Polym. Sci.;Polym. Chem. Ed. v.25 C.K.Ober;H.L.Hair https://doi.org/10.1002/pola.1987.080250516
  5. Macromolecules v.20 C.K.Ober;K.P.Lok https://doi.org/10.1021/ma00168a007
  6. J. Polym. Sci.;Polym. Chem. Ed. v.28 A.J.Paine https://doi.org/10.1002/pola.1990.080280921
  7. J. Polym. Sci.;Polym. Chem. Ed. v.31 S.Shen;E.D.Sudal;M.S.El-Aasser https://doi.org/10.1002/pola.1993.080310606
  8. J. Appl. Polym. Sci. v.55 R.Hu;V.L.Dimonie;E.D.Sudal;M.S.El-Aasser https://doi.org/10.1002/app.1995.070551006
  9. J. Polym. Sci.;Polym. Chem. Ed. v.33 J.M.Saenz;J.M.Asua https://doi.org/10.1002/pola.1995.080330913
  10. J. Polym. Sci.;Polym. Chem. Ed. v.33 D.Horak;F.Svec;J.M.J.Frecher https://doi.org/10.1002/pola.1995.080331405
  11. J. Polym. Sci.;Polym. Chem. Ed. v.24 C.M.Tseng;Y.Y.lu;M.S.El-Aasser;J.W.Vanderhoff
  12. Polymer(Korea) v.20 K.C.Lee
  13. Korea Polym. J. v.6 K.C.Lee;H.J.Seo;J.M.Park
  14. J. colloid Interface Sci. v.138 A.J.Paine https://doi.org/10.1016/0021-9797(90)90191-P
  15. Colloid Surf. v.3 T.Corner https://doi.org/10.1016/0166-6622(81)80072-8
  16. Langmuir v.13 B.Bay;B.M.Mandal https://doi.org/10.1021/la9605044
  17. Dispersion Polymerization in Organic Media K.E.J.Barrett(ed.)
  18. J. Coatings Tech. v.54 A.J.Backhouse
  19. J. Polym. Sci.;Polym. Chem. Ed. v.32 K.C.Lee;M.A.Winnik;T.C.Jao https://doi.org/10.1002/pola.1994.080321215
  20. Macromol. Res. v.10 K.C.Lee;S.E.Lee;B.K.Song https://doi.org/10.1007/BF03218263
  21. Polymer(Korea) v.27 K.C.Lee;S.E.Lee;B.K.Song
  22. J. Polym. Sci.;Polym. Chem. Ed. v.23 Y.T.Choi;M.S.EL-Aasser;E.D.Sudol;J.W.Vanderhoff https://doi.org/10.1002/pol.1985.170231206
  23. CRC Handbook of Solubility Parameters and Other Cohesion Parameters A.F.M.Barton