Browse > Article
http://dx.doi.org/10.20307/nps.2021.27.1.36

Volatiles Composition from Aerial Parts of the Insect-Pollinated and the Promising Medicinal Plant Spiraea hypericifolia L. Growing Wild in Northern Kazakhstan  

Kirillov, Vitaliy (Department of Breeding, A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry)
Stikhareva, Tamara (Department of Breeding, A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry)
Atazhanova, Gayane (Laboratory of Chemistry of Terpenoids,International Research-and-Production Holding Company "Phytochemistry")
Ercisli, Sezai (Department of Horticulture, Agricultural Faculty, Ataturk University)
Makubayeva, Aigerim (Laboratory of Chemistry of Terpenoids,International Research-and-Production Holding Company "Phytochemistry")
Krekova, Yana (Department of Breeding, A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry)
Rakhimzhanov, Alimzhan (Department of Breeding, A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry)
Adekenov, Sergazy (Laboratory of Chemistry of Terpenoids,International Research-and-Production Holding Company "Phytochemistry")
Publication Information
Natural Product Sciences / v.27, no.1, 2021 , pp. 36-44 More about this Journal
Abstract
The essential oils from the aerial parts (leaves and flowers) of Spiraea hypericifolia L. (Rosaceae), collected in Northern Kazakhstan, were obtained by distillation in two dispersion media (distilled water and 15% NaCl solution). The chemical composition of the essential oils was evaluated by GC-MS for the first time. The yield of the essential oil was 0.04% (in fresh growth conditions) and 0.02% (in dry growth conditions) respectively regardless of which dispersion media (H2O or 15% NaCl solution) was used at the isolation of essential oil. The main compounds were aliphatic hydrocarbons (alkanes) (40.6-53.2%), aldehydes (8.4-17.4%), diterpenoids (9.1-16.7%) and ketones (6.2-8.7%). Content of monoterpenoids was depended on dispersion media (2.2-3.6% where H2O was dispersion media and 8.4-8.5% where 15% NaCl solution was dispersion media). n-Heneicosane (17.4-34.1%) and n-tricosane (14.3-19.5%) were the main constituents of the essential oil of S. hypericifolia. There were many insects from different classes in S. hypericifolia at flowering. Important components such as α-methylene-γ-butyrolactone (0.8-2.8%), benzyl cyanide (0.7-1.1%), β-damascenone (1.2-2.9%), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (1.8-2.7%), β-ionone (0.5-1.8%) and others were detected in small amounts.
Keywords
Spiraea hypericifolia L.; Essential oil composition; Dispersion media; Aliphatic hydrocarbons; Aldehydes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rusanov, F. N.; Slavkina, T. I. In Dendrology of Uzbekistan: Rosaceae Vol. 4; Raikova, I. A. Ed; Species of the genus Spiraea introduced in the Botanical Garden of Academy of Sciences of Uzbek SSR; USSR, 1972, pp 196-304.
2 Pavlov, N. V. Flora of Kazakhstan. Vol. 4; Academy of Sciences of the Kazakh SSR Publishing house: USSR, 1961, p 548.
3 Vstovskaya, T. N.; Koropachinskiy, I. Yu. Woody plants of the Central Siberian Botanical Garden; Siberian Branch of Russian Academy of Sciences Publishing House: Russia, 2005, p 235.
4 Sokolov, P. D. Plant resources of the USSR: Flowering plants, their chemical composition, the use; The families Hidrangeaceae - Haloragaceae; Science; USSR, 1987, p 328.
5 Kudaibergen, A. A.; Dyusebaeva, M. A.; Ydyrys, A.; Feng, Y.; Jenis, J. Int. J. Biol. Chem. 2019, 12, 128-134.   DOI
6 Goryaev, M. I. Essential oils of the USSR Flora; Academy of Sciences of the Kazakh SSR Publishing house: USSR, 1952, p 380.
7 Kudaibergen, A. A.; Nurlybekova, A. K.; Dyusebaeva, M. A.; Feng, Y.; Jenis, J. News of the national Academy of Sciences of the Republic of Kazakhstan-series Chemistry and Technology 2020, 4, 73-79.
8 Kostikova, V. A.; Filippova, E. I.; Vysochina, G. I.; Mazurkova, N. A. In Conservation of Plant Diversity in Botanical Gardens: traditions, current situation and future: Proceedings of the International Conference commemorating the 70-th anniversary of Central Siberian Botanical Garden (Novosibirsk, 1-8 August, 2016); CSBG SB RAS; Russia, 2016, pp 156-157.
9 Fomin, V. N.; Usmanova, E. R.; Zhumashev, R. M.; Pokussayev, A. V.; Motuza, G.; Omarov, Kh. B.; Kim, Yu. Yu.; Ishmuratova, M. Yu. Bulletin of the Karaganda University Chemistry Series 2018, 91, 64-73.   DOI
10 Chumbalov, T. K.; Pashinina L. T.; Storozhenko, N. D. Chem. Nat. Compd. 1974, 10, 534.   DOI
11 Chumbalov, T. K.; Pashinina, L. T.; Storozhenko, N. D. Chem. Nat. Compd. 1975, 11, 440.   DOI
12 Chumbalov, T. K.; Pashinina, L. T.; Storozhenko, N. D. Chem. Nat. Compd. 1976, 12, 94-95.   DOI
13 Chumbalov, T. K.; Pashinina, L. T.; Storozhenko, N. D. Chem. Nat. Compd. 1976, 12, 232-233.   DOI
14 Teng, Y.; Yang, Q.; Yu, Z.; Zhou, G.; Sun, Q.; Jin, H.; Hou, T. World J. Microbiol. Biotechnol. 2010, 26, 9-14.   DOI
15 Budantsev, A. L. Plant resources of Russia: Wild growing flowering plants, their component composition and biological activity. Vol. 2. Family Actinidiaceae - Malvaceae, Euphorbiaceae - Haloragaceae; KMK Association of Scientific Publications: Saint-Petersburg, Moscow, Russia, 2009; p 512.
16 Karpova, E. A.; Lapteva, N. P. Turczaninowia 2014, 17, 42-56.   DOI
17 Karpova, E. A.; Imetkhenova, O. V. Turczaninowia 2015, 18, 108-115.   DOI
18 Jin, Z.; Zhang, J. J. Shanxi Agricultural Sciences 2017, 45, 729-731.
19 Zhang, W. H.; Qian, H.; Song, Y. J.; Shen, T. Modern Food Science and Technology. 2017, 33, 89-95.
20 Choi, H. S.; Lee, M. S. Korean J. Food Sci. Technol. 1996, 28, 827-833.
21 Adams, R. P. Identification of Essential Oil Components by Gas Chromatography: Quadrupole Mass Spectroscopy; Allured Publishing Corporation; USA, 2001, p 456.
22 Ebeler, S. E.; Pangborn, R. M.; Jennings, W. G. J. Agric. Food Chem. 1988, 36, 791-796.   DOI
23 Poll, L.; Flink, J. M. Food Chem. 1984, 13, 193-207.   DOI
24 Carriere, F.; Chagvardieff, P.; Gil, G.; Pean, M.; Sigoillot, J. C.; Tapie, P. Plant Sci. 1990, 71, 93-98.   DOI
25 Alves-Pereira, I. M. S.; Fernandes-Ferreira, M. Phytochemistry 1998, 48, 795-799.   DOI
26 Soliman, S. S. M.; Abouleish, M.; Abou-Hashem, M. M. M.; Hamoda, A. M.; El-Keblawy, A. A. Plants 2019, 8, 132.   DOI
27 Tao, C.; Wu, J.; Liu, Y.; Liu, M.; Yang, R.; Lv, Z. Eur. Food Res. Technol. 2018, 244, 881-891.   DOI
28 Pilon, J.; Lambers, H.; Baas, W.; Tosserams, M.; Rozema, J.; Atkin, O. K. Phytochemistry. 1999, 50, 571-580.   DOI
29 Ayasse, M. L. In Biology of Floral Scent: Floral scent and pollinator attraction in sexually deceptive orchids; Dudareva, N., Pichersky, E. Ed; CRC Press; Taylor and Francis Group; UK, 2006, pp 219-241.
30 Kessler, A.; Baldwin, I. T. Science 2001, 291, 2141-2144.   DOI
31 Dudareva, N.; Negre, F.; Nagegowda, D. A.; Orlova, I. Crit. Rev. Plant Sci. 2006, 25, 417-440.   DOI
32 Kim, C. S.; Hara, T.; Datta, P. K.; Itoh, E.; Horiike, M. Biosci. Biotechnol. Biochem. 1998, 62, 1546-1549.   DOI
33 Maffei, M. E.; Arimura, G.; Mithofer, A. Nat. Prod. Rep. 2012, 29, 1288-1303.   DOI
34 Wei, J.; Shao, W.; Cao, M.; Ge, J.; Yang, P.; Chen, L.; Wang, X.; Kang, L. Sci. Adv. 2019, 5, eaav5495.   DOI
35 Bonaventure, G.; Van Doorn, A.; Baldwin, I. T. Trends Plant Sci. 2011, 16, 294-299.   DOI
36 Huffaker, A.; Pearce, G.; Veyrat, N.; Erb, M.; Turlings, T. C. J.; Sartor, R.; Shen, Z.; Briggs, S. P.; Vaughan, M. M.; Alborn, H. T.; Teal, P. E. A.; Schmelz, E. A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 5707-5712.   DOI
37 Attaran, E.; Rostas, M.; Zeier, J. Mol. Plant Microbe Interact. 2008, 21, 1482-1497.   DOI
38 Mousavi, S. P.; Motamed, S. M. Nat. Prod. Sci. 2020, 26, 132-135.   DOI
39 Baldermann, S.; Yang, Z.; Sakai, M.; Fleischmann, P.; Watanabe, N. Floriculture Ornamental Biotech. 2009, 3, 89-97.
40 Pineau, B. D.; Barbe, J. C.; Van Leeuwen, C.; Dubourdieu, D. J. Agric. Food Chem. 2007, 55, 4103-4108.   DOI