Browse > Article

First-Order Mass Transfer in a Vortex-Dispersion Zone of an Axisymmetric Groove: Laboratory and Numerical Experiments  

Kim, Young-Woo (호서대학교 자동차공학과)
Kang, Ki-Jun (호서대학교 자동차공학과)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.23, no.6, 2010 , pp. 651-657 More about this Journal
Abstract
Solute transport through a groove is affected by its vortices. Our laboratory and numerical experiments of dye transport through a single axisymmetric groove reveal evidence of enhanced spreading and mixing by the vortex, i.e., a new kind of dispersion called here the vortex dispersion. The uptake and release of contaminants by vortices in porous media is affected by the flow Reynolds number. The larger the flow Reynolds number, the larger is the vortex dispersion, and the larger is the mass-transfer rate between the mobile zone and the vortex. The long known dependence of the mass-transfer rate between the mobile and "immobile" zones in porous media on flow velocity can be explained by the presence of vortices in the "immobile" zone and their uptake and release of contaminants.
Keywords
solute transport; mass tranfer; vortex; dispersion; numerical analysis; computational fluids dynamics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Glueckauf, E. (1955) Theory of Chromatography, part 10, Formulae for Diffusion into Spheres and their Application to Chromatography, Trans. Faraday Soc., 51, pp.1540-1551,   DOI
2 Valocchi, A.J. (1990) Use of Temporal Moment Analysis to Study Reactive Solute Transport in Aggregated Porous Media, Geoderma, 46(1-3), pp.233-247.   DOI
3 Brusseau, M.L. (1992) Nonequilibrium Transport of Organic Chemicals-The Impact of Pore-Water Velocity, J. Contam. Hydrol., 9(4), pp.353-368.   DOI   ScienceOn
4 Cao, J., Kitanidis, P.K. (1998) Adaptive Finite Element Simulation of Stokes flow in Porous Media, Adv. Water Res., 22(1), pp.17-31.   DOI   ScienceOn
5 Cieslicki, K., Lasowska, A. (1999) Experimental Investigations of Steady flow in a Tube with Circumferential Wall Cavity, Journal of Fluids Engineering, 121, pp.405-409.   DOI
6 Coats, K.H., Smith, B.D. (1964) Dead-End Pore Volume and Dispersion in Porous Media, Soc. Petrol. Eng. J., 4, pp.73-84.
7 Cunningham, J.A., Werth, C.J., Reinhard, M., Roberts, P.V. (1997) Effects of Grain-Scale Mass Transfer on the Transport of Volatile Organics Through Sediments.1. Model development, Water Resour. Res., 33(12) pp.2713-2726.   DOI   ScienceOn
8 Villeramaux, J. (1990) Dynamics of Linear Interactions in Heterogeneous Media: A Systems Approach, J. Pet. Sci. Eng., 4(1), pp.21-30.   DOI   ScienceOn
9 Villeramaux, J. (1981) Theory of Linear Chromatography, in Percolation Processes, Theory and Applications, edited by A.E. Rodrigues and D. Tondeur, NATO ASI Ser., Ser. E, 33, pp.83-140.
10 Villeramaux, J. (1987) Chemical Engineering Approach to Dynamic Modeling of Linear Chroma- Tography: A Flexible Method for Representing Complex Phenomena from Simple Concepts, J. Chromatogr. 406, pp.11-26,   DOI
11 Werth, C.J., Cunningham, J.A., Roberts, P.V., Reinhard, M. (1997) Effects of Grain-Scale Mass Transfer on the Transport of Volatile Organics Through Sediments. 2. Column Results, Water Resour. Res., 33(12), pp.2727-2740   DOI   ScienceOn
12 Ranade, V.V., Dommeti, S.M.S. (1996) Computational Snapshot of Flow Generated by Axial Impeller in Baffled Stirred Vessels, Chem. Eng. Res. Design, 74(A4), pp.476-484.
13 Kitanidis, P.K., Dykaar, B. (1997) Stokes Flow in a Slowly Varying Two-Dimensional Periodic Pore, Trans. Porous Media, 26, pp.89-98.   DOI   ScienceOn
14 Leneweit, G., Auerbach, D. (1999) Detachment Phenomena in Low Reynolds Number Flows Through Sinusoidally Constricted Tubes, J. Fluid Mech., 387, pp.129-150.   DOI
15 Meigs, L.C., Beauheim, R.L. (2001) Tracer Tests in a Fractured Dolomite. 1. Experimental Design and Observed Tracer Recoveries, Water Resour. Res., 37(5), pp.1113-1128.   DOI   ScienceOn
16 Rao, P.S.C., Rolston, D.E., Jessup, R.E., Davidson, J.M. (1980) Solute Transport in Aggregated Porous Media-Theoretical and Experimental Evaluation, Soil Sci. Soc. Am. J., 44(6), pp.1139-1146.   DOI   ScienceOn
17 Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B. (2003) Fractal Mobile/Immobile Solute Transport, Water Resour. Res., 39(10), Art. No. 1296.
18 Rao, P.S.C., Jessup, R.E., Rolston, D.E., Davidson, J.M., Kilcrease, D.P. (1980) Experimental and Mathematical Description of Non-Adsorbed Solute Transfer by Diffusion in Spherical Aggregates, Soil Sci. Soc. Am. J., 44(4), pp.684-688.   DOI
19 Sanyal, J., Vasquez, S., Roy, S., Dudukovic, M.P. (1999) Numerical Simulation of Gas-Liquid Dynamics in Cylindrical Bubble Column Reactors, Chem. Eng. Sci., 54(21), pp.5071-5083.   DOI   ScienceOn
20 Sardin, M., Schweich, D., Leij, F.J., van Genuchten, M.T. (1991) Modeling the Nonequilibrium Transport of Linearly Interacting Solutes in Porous Media-A Review, Water Resour. Res., 27(9), pp.2287-2307.   DOI
21 Stehfest, H. (1970) Numerical Inversion of Laplace Transforms, Commun.ACM. 13, pp.47-49.   DOI
22 van Genuchten, M.T., Wierenga, P.J. (1976) Mass Transfer Studies in Sorbing Porous Media. 1. Analytical Solutions, Soil Sci. Soc Am. J., 40, pp.473-480.   DOI   ScienceOn
23 Haggerty, R., Fleming, S.W., Meigs, L.C., McKenna, M.C. (2001) Tracer Tests in a Fractured Dolomite. 2. Analysis of Mass Transfer in Single-well Injection-Withdrawal Tests, Water Resour. Res., 37(5), pp.1129-1142,   DOI   ScienceOn
24 Kim Y.W, Seo, B.M., Hwang, S.M., Park, C.S. (2010) Derivation of the First-Order Mass-Transfer Equation for a Diffusion-Dominated Zone of a 2-D Pore, KSME-B, 34(2), pp.99-103
25 Haggerty, R., Harvey, C.F., von Schwerin, C.F., Meigs, L.C. (2004) What Controls the Apparent Timescale of Solute Mass Transfer in Aquifers and Soils, A Comparison of Experimental Results, Water Resour. Res., 40(1): Art. No. W01510.
26 He, C.H., Ahmadi, G. (1998) Particle Deposition with Thermophoresis in Laminar and Turbulent Duct Flows, Aerosol Sci. Tech., 29(6), pp.525-546.   DOI   ScienceOn
27 Hemmat, M., Borhan, A. (1995) Creeping Flow Through Sinusoidally Constricted Capillaries, Phys. Fluids, 7(9), pp.2111-2121   DOI   ScienceOn
28 de Beer, D., Stoodley, P., Lewandowski, Z. (1997) Measurement of Local Diffusion Coefficients in Biofilms by Microinjection and Confocal Microscopy, Biotechnol. Bioeng., 53(2), pp.151-158.   DOI   ScienceOn
29 Haggerty, R., Gorelick, S.M. (1998) Modeling Mass Transfer Processes in Soil Columns with Pore-Scale Heterogeneity, Soil Sci. Soc. Am. J., 62(1), pp.62-74.   DOI   ScienceOn
30 Haggerty, R., Gorelick, S.M. (1995) Multiple-Rate Mass-Transfer for Modeling Diffusion and Surface-Reactions in Media with Pore-Scale Heterogeneity, Water Resour. Res., 31(10), pp. 2383-2400.
31 Haggerty, R., McKenna, S.A., Meigs, L.C. (2000) On the Late-Time Behavior of Tracer Test Breakthrough Curves, Water Resour. Res., 36(12), pp.3467-3479.   DOI   ScienceOn
32 Bajracharya, K., Barry, D.A. (1997) Nonequilibrium Solute Transport Parameters and Their Physical Significance: Numerical and experimental results, J. Contam. Hydrol., 24(3-4), pp.185-204.   DOI
33 Brusseau, M.L., Jessup, R.E., Rao, P.S.C. (1989) Modeling the Transport of Solutes Influenced by Multiprocess Nonequilibrium, Water Resour. Res., 25(9), pp.1971-1988.   DOI