• Title/Summary/Keyword: Discrete-time robust control

Search Result 123, Processing Time 0.029 seconds

Robust H$_\infty$ Control for Discrete Time-delay Linear Systems with Frobenius Norm-bounded Uncertainties (파라미터 불확실성을 가지는 이산 시간지연 시스템에 대한 견실 H$_\infty$ 제어)

  • 김기태;이형호;이상경;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.23-23
    • /
    • 2000
  • In this paper, we proposed the problems of robust stability and 개bust H$_{\infty}$ control of discrete time-delay linear st.stems with Frobenius norm-bounded uncertainties. The existence condition and the design method of robust H$_{\infty}$ state feedback control]or are given. Through some changes of variables and Schur complement, the obtained sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

  • PDF

Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input (상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.

Delay-Dependent Robust Stabilization and Non-Fragile Control of Uncertain Discrete-Time Singular Systems with State and Input Time-Varying Delays (상태와 입력에 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연종속 강인 안정화 및 비약성 제어)

  • Kim, Jong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • This paper deals with the design problem of robust stabilization and non-fragile controller for discrete-time singular systems with parameter uncertainties and time-varying delays in state and input by delay-dependent Linear Matrix Inequality (LMI) approach. A new delay-dependent bounded real lemma for singular systems with time-varying delays is derived. Robust stabilization and robust non-fragile state feedback control laws are proposed, which guarantees that the resultant closed-loop system is regular, causal and stable in spite of time-varying delays, parameter uncertainties, and controller gain variations. A numerical example is given to show the validity of the design method.

Robust Stability of Uncertain Discrete-Time Linear Systems with Time-Varying Delays (시변 시간 지연을 갖는 불확실한 이산 시간 선형 시스템의 견실 안정성)

  • Song, Seong-Ho;Park, Seop-Hyeong;Lee, Bong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.641-646
    • /
    • 1999
  • This paper deals with the robust stability of discrete-time linear systems with time- varying delays and norm-bounded uncertainties. In this paper, the magnitude of time-varying delays is assumed to be upper-bounded. The sufficient condition is presented in terms of linear matrix inequality. It is also shown that the robust stability of uncertain discrete-time linear systems with time-varying delays is related with the quadratic stability of uncertain discrete-time linear systems with constant time delay.

  • PDF

Robustness of discrete-time variable structure control to parametric uncertainties (매개변수의 불확실성에 대한 이산시간 가변구조 제어기법의 견실성)

  • 은용순;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.293-296
    • /
    • 1997
  • Robust stability conditions for discrete-time variable structure control is proposed. Conventionally the discrete-time variable structure control method with a variable structure uncertainty compensator approach requires a bounded changing rate of the uncertainties to ensure robust stability. However, when uncertainties vary as a function of state variables, which occur with parametric uncertainties, it is not reasonable to assume a bounded variation on the uncertainties. In this paper, uncertainties are assumed to consist of exogenous disturbances and parametric uncertainties. An uncertainty compensator is used to deal with the former, and a robust stability condition is derived using Small Gain Theorem for the latter.

  • PDF

Robust Vibration Control of Smart Structures via Discrete-Time Fuzzy-Sliding Modes (이산시간 퍼지-슬라이딩모드를 이용한 스마트구조물의 강건진동제어)

  • Choi, Seung-Bok;Kim, Myoung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3560-3572
    • /
    • 1996
  • This paper presents a new discrete-time fuzzy-sliding mode controller for robust vibration control of a smart structure featuring a piezofilm actuator. A governong equation of motion for the smart beam structure is derived and discrete-time codel with mismatched uncertainties such as parameter variations is constructed ina state space. A discrete-time sliding mode control system consisting of an equivalent controller and a discontinuous controller is formulated. In the design of the equivalent part, so called an equivalent controller separation method is adopted to achieve vzster convergence to a sliding surface without extension of a sliding region, in which the system robustness maynot be guaranteed. On the other hand, the discontinuous part is constructed on the basis of both the sliding and the convergence conditions using a time-varying feedback gain. The sliding moide controller is then incorporated with a fuzzy technique to appropriately determine principal control parameters such as a discountinuous feedback gain. Experimental implementation on the forced and random vibraiton controls is undertaken in order to demonstrate superior control performance of the proposed controller.

New Robust $H_{\infty}$ Performance Condition for Uncertain Discrete-Time Systems

  • Zhai, Guisheng;Lin, Hai;Kim, Young-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.322-326
    • /
    • 2003
  • In this paper, we establish a new robust $H_{\infty}$ performance condition for uncertain discrete-time systems with convex polytopic uncertainties. We express the condition as a set of linear matrix inequalities (LMIs), which are used to check stability and $H_{\infty}$ disturbance attenuation level by a parameter-dependent Lyapunov matrix. We show that the new condition provides less conservative result than the existing ones which use single Lyapunov matrix. We also show that the robust $H_{\infty}$ state feedback design problem for such uncertain discrete-time systems can be easily dealt with using the approach. The key point in this paper is to propose a kind of decoupling between the Lyapunov matrix and the system matrices in the parameter-dependent matrix inequality by introducing one new matrix variable.

  • PDF

Robust Stabilization and Guaranteed Cost Control for Discrete-time Singular Systems with Parameter Uncertainties (변수 불확실성을 가지는 이산시간 특이시스템의 강인 안정화 및 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we consider the design problem of robust stabilization and robust guaranteed cost state feedback controller for discrete-time singular systems with parameter uncertainties by LMI(linear matrix inequality) approach without semi-definite condition and decomposition of system matrices. The objective of robust stabilization controller is to construct a state feedback controller such that the closed-loop system is regular, causal, and stable. In the case of robust guaranteed cost control, the optimal value of guaranteed cost and controller design method are presented on the basis of robust stabilization control technique. Finally, a numerical example is provided to show the validity of the design methods.

Robust tuning of quadratic criterion-based iterative learning control for linear batch system

  • Kim, Won-Cheol;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.303-306
    • /
    • 1996
  • We propose a robust tuning method of the quadratic criterion based iterative learning control(Q-ILC) algorithm for discrete-time linear batch system. First, we establish the frequency domain representation for batch systems. Next, a robust convergence condition is derived in the frequency domain. Based on this condition, we propose to optimize the weighting matrices such that the upper bound of the robustness measure is minimized. Through numerical simulation, it is shown that the designed learning filter restores robustness under significant model uncertainty.

  • PDF

Robust stability for discrete time-delay systems with perturbations (섭동을 가지는 이산 시간지연 시스템의 강인 안정성)

  • Park, Ju-Hyeon;Won, Sang-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.158-164
    • /
    • 1996
  • In this paper, we consider the problem of robust stability of discretd time-delay systems subjected to perturbations. Two classes of perturbations are treated. The first one is the nonlinear norm-bounded perturbation, and the second is the structured time-varying parametric perturbation. Based on the discrete-time Lyapunov stability theory, several new sufficient conditions for robust stability of the system are presented. From these conditions, we can estimate the maximum allowable bounds of the perturbations which guarantee the stability. Finally, numerical examples are given to demonstrate the effectiveness of the results.

  • PDF