• Title/Summary/Keyword: Discrete-time design

Search Result 536, Processing Time 0.023 seconds

Design of new sliding mode control system using discrete-time switching dynamics and its stability analysis (이산 시간 스위칭 다이나믹을 이용한 새로운 슬라이딩 모드 제어 시스템의 설계 및 안정도 해석)

  • 김동식;서호준;서삼준;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.407-414
    • /
    • 1996
  • In this paper we consider the variable structure control for a class of discrete-time uncertain multivariable systems where the nominal system is linear. Discrete-time switching dynamics are introduced so that a new type of state trajectories called sliding mode may exist on the sliding surface by state feedback. The quantitative analysis for the matched uncertainties will show that every response of the system with the proposed switching dynamics is bounded within small neighborhoods of the state-space origin. Also, by the similarity transformation it will be shown that the eigenvalues of the closed-loop systems are composed of those of the subsystems which govern the range-space dynamics and null-space dynamics. It will be also shown that ideal sliding mode can be obtained in the absence of uncertainties due to one-step attraction to the sliding surface regardless of initial position of states. (author). 12 refs., 2 figs.

  • PDF

Model-free $H_{\infty}$ Control of Linear Discrete-time Systems using Q-learning and LMI Based on I/O Data (입출력 데이터 기반 Q-학습과 LMI를 이용한 선형 이산 시간 시스템의 모델-프리 $H_{\infty}$ 제어기 설계)

  • Kim, Jin-Hoon;Lewis, F.L.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1411-1417
    • /
    • 2009
  • In this paper, we consider the design of $H_{\infty}$ control of linear discrete-time systems having no mathematical model. The basic approach is to use Q-learning which is a reinforcement learning method based on actor-critic structure. The model-free control design is to use not the mathematical model of the system but the informations on states and inputs. As a result, the derived iterative algorithm is expressed as linear matrix inequalities(LMI) of measured data from system states and inputs. It is shown that, for a sufficiently rich enough disturbance, this algorithm converges to the standard $H_{\infty}$ control solution obtained using the exact system model. A simple numerical example is given to show the usefulness of our result on practical application.

Robust Dissipative Filtering for Polytopic Uncertain Singular Systems in Continuous & Discrete Time (연속과 이산시간 폴리토픽 불확실성을 가지는 특이시스템의 산일성 필터링)

  • Chan, Danny;Kim, Jong-Hae;Oh, Do-Chang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.994-1000
    • /
    • 2014
  • This paper considers the problem of continuous and discrete time dissipative filter design method for the singular systems with polytopic uncertainties. Two bounded real lemmas (BRL) for the robust filters of dissipative singular systems along with the polytopic uncertainties are proposed on the basis of Lyapunov criterion. The sufficient conditions for both continuous and discrete time dissipative filter design methods are derived using the obtained BRL by linear matrix inequality (LMI) approach. Finally, the validities of the proposed methods are shown by numerical examples.

Control of discrete-time chaotic systems using indirect adaptive control (간접 적응 제어 기법을 이용한 이산치 혼돈 시스템의 제어)

  • 박광성;주진만;최윤호;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.318-322
    • /
    • 1996
  • In this study, a controller design method is proposed for controlling the discrete-time chaotic systems efficiently. Our proposed control method is based on Generalized Predictive Control and uses NARMAX models as a controlled model. In order to evaluate the performance of our proposed controller design method, a proposed controller is applied to Henon system which is a discrete-time chaotic system, and then the control performance of the proposed controller are compared with those of the previous model-based controllers through computer simulations. Through simulations, it is shown that the control performance of the proposed controller is superior to that of the conventional model-based controller.

  • PDF

Controller Design for Discrete-Time Affine T-S Fuzzy System with Parametric Uncertainties (파라미터 불확실성을 갖는 이산시간 어핀 T-S 퍼지 시스템의 제어기 설계)

  • Lee, Sang-In;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2516-2518
    • /
    • 2004
  • This paper proposes a stability condition in discrete-time affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties and then, introduces the design method of a fuzzy-model-based controller which guarantees the stability. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of linear matrix inequalities (LMIs).

  • PDF

Design of a Discrete Time Sliding Mode Controller for Laser Marking System (레이저 마킹 시스템의 이산시간 슬라이딩 모드 제어기 설계)

  • 이충우;채수경;최재모;정정주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.304-311
    • /
    • 2004
  • In this paper we present a technique of discrete-time sliding mode controller design for assigning eigenvalues of sliding mode and determining a convergence rate to sliding surface. First the sliding mode coefficient is designed via Ackermann s formula. Then a linear controller is designed to enforce sliding mode such that the resulting closed loop yields the desired eigenvalues. As we use a linear control instead of nonlinear control, chattering is nearly eliminated. Simulation and experimental results are included to show the effectiveness of the proposed method for Laser Marking System.

DISCRETE-TIME MIXED $H_2/H_{\infty}$ FILTER DESIGN USING THE LMI APPROACH

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.129-132
    • /
    • 1999
  • This paper deals with the optimal filtering problem constrained to input noise signal corrupting the measurement output for linear discrete-time systems. The transfer matrix H$_2$and/or H$_{\infty}$ norms are used as criteria in an estimation error sense. In this paper, the mixed $H_2/H_{\infty}$ filtering Problem in lineal discrete-time systems is solved using the LMI approach, yielding a compromise between the H$_2$and H$_{\infty}$ filter designs. This filter design problems we formulated in a convex optimization framework using linear matrix inequalities. A numerical example is presented.

  • PDF

Discrete-Time Controller Design using Identification of Feedback System in Frequency Domain (주파수역 피드백 시스템 인식을 이용한 이산시간 제어기 설계)

  • Jung, Yu-Chul;Shim, Young-Bok;Lee, Gun-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.99-104
    • /
    • 2001
  • Discrete-time controller design is proposed using feedback system identification in frequency domain. System Stability imposed by a new controller is checked in the function of a conventional closed-loop system, instead of a poorly modeled plant due to non-linearity and disturbance as well as unstable components, etc. The stability of the system is evaluated in view of Popov criterion. All the equations are formulated in the framework of the discrete-time system. Simulation results are shown on the plant with input saturation components, DC disturbance and a pure integration.

  • PDF

Digital Speed Regulator System Design for a Permanent Magnet Synchronous Motor

  • Choi, Han-Ho;Jung, Jin-Woo;Kim, Tae-Heoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.911-917
    • /
    • 2012
  • In this paper, a digital speed regulator system design method is developed for a permanent magnet synchronous motor (PMSM). Firstly, an accurate approximate discrete-time model is proposed for a PMSM considering its inherent nonlinearities. Based on the discrete-time model, a digital acceleration observer as well as a digital speed regulator is designed. The exponential stability of the augmented control system is analyzed. The proposed digital speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are given to verify the effectiveness of the proposed method.

Robust digital controller for robot manipulators

  • Ishihara, Tadashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1671-1676
    • /
    • 1991
  • Direct digital design of computed torque controllers for a robot manipulator is discussed in this paper. A simple discrete-time model of the robot manipulator obtained by Euler's method is used for the design. Taking account of computation delay in the digital processor, we propose predictor-based designs of the PD and PID type controllers. The PID type controller is designed based on a modified version of the discrete-time integral controller proposed by Mita. For both controllers, the same formulas can be used to determine the feedback gains. A simulation example is presented to compare the robustness of the proposed controllers against physical parameter variations.

  • PDF