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Abstract – In this paper, a digital speed regulator system design method is developed for a permanent 

magnet synchronous motor (PMSM). Firstly, an accurate approximate discrete-time model is proposed 

for a PMSM considering its inherent nonlinearities. Based on the discrete-time model, a digital 

acceleration observer as well as a digital speed regulator is designed. The exponential stability of the 

augmented control system is analyzed. The proposed digital speed regulator system is implemented by 

using a TMS320F28335 floating point DSP. Simulation and experimental results are given to verify 

the effectiveness of the proposed method.   
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1. Introduction 
 
Rapid development of DSPs and power electronics has 

stimulated the widespread use of a permanent magnet 

synchronous motor (PMSM) in many industrial 

applications. A PMSM features low noise, low inertia, high 

efficiency, robustness, and low maintenance cost. Many 

researchers have developed various PMSM controller 

design methods, e.g., adaptive control [1-5], nonlinear 

feedback linearization control [6], fuzzy control [7, 8], 

disturbance-observer-based control [9, 10]. Almost all the 

previous PMSM control design methods are based on the 

controller emulation approach. Alternatively, the discrete-

time approach can be used to design  digital controllers for 

nonlinear systems. In view of stability and achievable 

performances, the discrete-time approach is typically better 

than the emulation approach [11]. This  paper develops a 

digital controller design method for a PMSM based on the 

discrete-time approach. An accurate approximate discrete-

time model is first derived. By using the discrete-time 

model a digital speed regulator as well as a digital 

acceleration observer is designed. The exponential stability 

of the augmented control system containing the regulator 

and observer is analytically proven in the discrete-time 

domain. Simulation and experimental results are given to 

verify that the proposed method can be successfully 

applied for PMSM speed control under load torque 

variations. 

 

 

2. Continuous-Time Model of PMSM 

 

A surface mounted PMSM can be represented by the 

following continuous-time nonlinear equation [10]: 
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where, TL denotes the load torque, ω is the electrical rotor 

angular speed, iqs is the q-axis current, Vqs is the q-axis 

voltage, ids is the d-axis current, Vds is the d-axis voltage, p 

is the number of poles, Rs is the stator resistance, Ls is the 

stator inductance, J is the rotor inertia, B is the viscous 

friction coefficient, λm is the magnetic flux, and ki > 0, i = 1, 

· · · , 6 are the parameter values given by 
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3. Main Results 

 

3.1 Discrete-Time Model of PMSM 

 

Recently, several techniques have been developed to get 

an accurate approximate discrete-time model of a nonlinear 

system. Here, by using the method [11] we derive an 

accurate approximate discrete-time model of the nonlinear 

PMSM (1). The nonlinear PMSM (1) is first transformed 

into the normal form. Denote the electrical rotor angular 

acceleration by 
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We will assume that L
T& can be neglected. Then, (1) can 

be transformed into the following normal form [10] 
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After all, by [11] we can get the following accurate 

approximate discrete-time model of the PMSM  
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It should be noted that a discrete-time model by an 

Euler approximation method or simple derivative 

replacement method would not contain the term 
2 2 2
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of (5). By introducing the speed error ωe = ω−ωd the 

following error dynamics can be obtained 
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and T is the sampling period. 

 

3.2 Discrete-time speed controller design 

 

Let the control input variables Vqs and Vds be 

decomposed as 
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and as shown in Fig. 1 let the control law be given by 
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where ( ) [ , ]
T

qdf qf df
u k u u= , and K∈R2×3 is a gain matrix. 

Then the closed-loop control system of the discrete-time 

PMSM model (6) and the discrete-time state feedback 

controller (9) is given by  
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Assume that the following LMI is feasible for (X, Y ) 
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And assume that the controller gain matrix K is given by 

 

 1K YX −=             (12) 

 

Then by using Schur complement formula of [18] it can 

be shown that (11) is equivalent to 
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Pre-multiplying and post-multiplying (13) by X-1 the 

following can be obtained 
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which implies the existence of a positive constant δc such 

that 
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By using the Lyapunov function as Vc(k) = x
TPcx where 

Pc = X
-1 we can obtain 
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c c c
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which implies that the origin x = 0 is exponentially stable. 

 

Theorem 1: Assume that the LMI (11) is feasible for 

(X,Y ), the digital control law is given by (9), and the gain 
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matrix K is given by (12). Then, x converges exponentially 

to zero. 

 

 

Fig. 1. Block diagram of the proposed digital speed 

regulator. 

 

3.3 Discrete-time acceleration observer design  

 

The proposed control law requires the acceleration 

information β(k) in order to account for the load torque 

term TL. Here, an observer is proposed to obtain the 

acceleration information β(k). The following digital 

observer is used : 
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where βo(k) is an estimate of β(k), L∈R3×2 is a gain matrix, 

y(k) = Cx(k), and 
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Fig. 2 shows the block diagram of the proposed observer. 

Using the discrete-time PMSM model (5), the following 

observer error dynamics can be obtained 
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where χ(k)=x(k)-xo(k). 

 

Theorem 2: Assume that the following LMI is feasible 

for (P, H) 
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And assume that the observer gain matrix L is given by 

 

 1L P H−=                 (21) 

 

Then, the estimation error converges exponentially to 

zero. 

 

Proof : Assume that (20) is feasible. Then by using 

Schur complement formula of [13] it can be shown that 

there exists a positive constant δo such that 
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Let us define the Lyapunov function as Vo(k) = χ
TPχ. Its 

time derivative along the error dynamics (19) is given by 
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which implies that the origin χ = 0 is exponentially stable. 

 

3.4 Stability of closed-loop system 

 

Theorem 3 : Assume that the LMIs (11) and (20) are 

feasible, and the following observer-based control law is 

used instead of (9) 
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where xe(k) = [ωe(k),xo2(k),ids(k)]
T = [ωe(k), βo(k), ids(k)]

T , 

xo2 = βo is the estimated acceleration via the digital 

observer (17). Then x and χ converge exponentially to zero. 

 

Proof : Because β - xo2 = β - βo = [0, 1,0] χ, the vector xe 

can be rewritten as xe = x - Eχ where 
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Let us define the Lyapunov function as V (k) = xTX-1x 

+ζχTPχ where ζ is a sufficiently large scalar, X and P satisfy 

the LMIs (11) and (20). Then, the following inequality is 

satisfied 
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If ζ is large enough to guarantee ζ>(δ2
2/ δc +δ1)/δo , then 

Q > 0 and V (k + 1) < V (k) for all (x, χ) ̸= 0.  

 

 

Fig. 2. Block diagram of the proposed digital acceleration 

observer. 

 

 

4. Simulation and Experiment 

 

Let us consider a prototype PMSM with the following 

nominal parameters: rated power Prated = 1 HP; rated phase 

current Irated = 3.94 A; rated torque Trated = 3.9 N⋅m; p = 12; 

Rs = 0.99 Ω; Ls = 5.82 mH; λm = 7.92×10
-2 V⋅sec/rad; J = 

12.08×10-4 kg⋅m2; B = 3×10-4 N⋅m⋅sec/rad. Under the 
sampling period T = 1/5000, the discrete-time model (6) 

with the following data can be obtained 
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By referring to the previous section, the following gain 

matrices can be obtained 

 

0.7914 0.0026
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    (26) 

 

Fig. 3 shows the overall block diagram of the proposed 

digital PMSM control system. In simulations and 

experiments, a space vector PWM (SVPWM) technique is 

adopted. Figs. 4 and 5 show the simulation results using 

Matlab/Simulink about two cases : nominal parameters and 

150% variations of some parameters (Ls, J, and TL). In both 

cases, the desired motor speed (ωd) increases from 251.32 

[rad/sec] to 502.64 [rad/sec] and then decreases from 

502.64 [rad/sec] to 251.32 [rad/sec]. Fig. 4 shows the 

simulation results (ωd, ω, ωe, iqs, ids, Van, ia) when the 

digital controller with the gain (26) is applied to the PMSM 

model under nominal condition. Fig. 5 shows the 

simulation results under 150% variations of some 

parameters (Ls, J, and TL). Fig. 6 shows the simulation 

results under 150% variations of some parameters (Ls, J) 

when the desired speed ωd increases up to the rated value 

(1850 rpm). That is, the desired motor speed ωd suddenly 

 

Fig. 3. Block diagram of the proposed digital PMSM 

control algorithm. 

 

 

 

Fig. 4. Simulation results under nominal condition. 

 

 

 

Fig. 5. Simulation results 150% variations of some 

parameters (Ls, J, and TL). 
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increases from 565.49 to 1162.39 [rad/sec] and then 

decreases from 1162.39 to 565.49 [rad/sec]. Figs. 4 to 6, it 

can be observed that the proposed digital speed controller 

is very robust to model parameter and load torque 

variations.  

 

 

Fig. 6. Simulation results 150% variations of some 

parameters (Ls and J) at the rated speed and rated 

torque. 

 

Fig. 7 shows the experimental results about motor speed, 

voltage and current under the same condition as Fig. 4. Fig. 

7(a) shows the desired speed (ωd), measured speed (ω), 

speed error (ωe), and Fig. 8(b) shows the measured q-axis 

current (iqs) and d-axis current (ids), and Fig. 8(c) shows the 

line to neutral voltage (Van) and phase a current (ia). Fig. 8 

also shows the experimental results about motor speed, 

voltage and current under the same condition as Fig. 5. The 

simulation and experimental results imply that the 

proposed digital controller can accurately control the speed 

of a PMSM under both model parameter and load torque 

variations. 

 

4. Conclusion 

 

This paper proposed a digital speed regulator design 

method for a PMSM based on the discrete-time approach. 

The proposed digital speed controller is robust because it 

does not depend on load torque variations. The closed-loop 

system stability was proven in the discrete-time domain. 

By using various simulation and experimental results, it 

was verified that the proposed method can be successfully 

applied for PMSM speed control under load torque 

variations. 
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Fig. 7. Experimental results under nominal condition. 

(Top) ωd, ω, ωe. (Middle) iqs, ids. (Bottom) Van, ia 
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