• Title/Summary/Keyword: Discrete controller

Search Result 499, Processing Time 0.029 seconds

Discrete-Time Sliding Mode Controller Design for Scanner system (Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF

A Design Method for a discrete-time $\textrm{H}^{\infty}$ Controller (이산시간 $\textrm{H}^{\infty}$제어기의 설계방법)

  • 최연욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1444-1447
    • /
    • 1997
  • In this paper, the problen of dseigning a H.inf. controller is considered, where the controller is realized through digital equipment. We show that the existing discrete-time controller design method can be improved by usign the inveres bilinear transformation. The usefulness of the given method is confirmed by simulation.

  • PDF

Time Domain Based Digital Controller for Buck-Boost Converter

  • Vijayalakshmi, S.;Sree Renga Raja, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1551-1561
    • /
    • 2014
  • Design, Simulation and experimental analysis of closed loop time domain based Discrete PWM buck-boost converter are described. To improve the transient response and dynamic stability of the proposed converter, Discrete PID controller is the most preferable one. Discrete controller does not require any precise analytical model of the system to be controlled. The control system of the converter is designed using digital PWM technique. The proposed controller improves the dynamic performance of the buck-boost converter by achieving a robust output voltage against load disturbances, input voltage variations and changes in circuit components. The converter is designed through simulation using MATLAB/Simulink and performance parameters are also measured. The discrete controller is implemented, and design goal is achieved and the same is verified against theoretical calculation using LabVIEW.

Modelling and controller design for hybrid system (하이브리드 시스템을 위한 모델 및 제어기 설계)

  • 박홍성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.348-352
    • /
    • 1993
  • A hybrid system contains both continuous variables and discrete event components. This paper presents the new control architecture for hybrid systems, which consists of a conventional controller for the continuous-time variable of the system, a supervisor for discrete event components of the system, and an interface for link between the controller and the plant. The presented controller is suitable for the system operating at the different operating conditions or for system being changing the plant model by enabling and disabling discrete events. This paper shows that the presented controller is better than the conventional controller.

  • PDF

Design of generalized predictive controller for discrete-time chaotic systems (아산치 혼돈 시스템의 제어를 위한 일반형 예측 제어기의 설계)

  • 박광성;주진만;박진배;최윤호;윤태성
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.53-62
    • /
    • 1997
  • In this study, a controller design method is proposed for controlling the discrete-time chaotic systems efficiently. The proposed control method is based on Generalized Predictive Control and uses NARMAX models as controlled models. In order to evaluate the performance of the proposed method, a proposed controller is applied to discrete-time chaotic systems, and then the control performance and initial sensitivity of the proposed controller are compared with those of the conventional model-based controler through computer simulations. Through simulations results, it is shown that the control performance of the proposed controller is superior to that of the conventional model-based controller and shown that the peorposed controller is less sensitive to initial values of discrete-time chaotic systems in comparison with the conventional model-based controller.

  • PDF

An Unifying Design Algorithm for Efficient Digital Implementation of Continuous PID Controller using General Discrete Orthogonal Functions (연속 PID 제어기의 효율적 디지털 구현을 위한 일반적인 이산직교함수들을 이용한 통합 설계 알고리즘의 제안)

  • Kim, Yoon-Sang;Oh, Hyun-Cheol;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.263-269
    • /
    • 1999
  • In this paper, an unifying design algorithm is presented for efficient digital implementation of continuous PID controller using general discrete orthogonal functions. The proposed algorithm is an algebraic method to determine controller parameters, which can unify controller design procedures divided into three ways. A set of linear equations for the controller design are derived from simple algebraic transformation based on general discrete orthogonal functions. By solving these equations, all of the controller parameters can be determined directly and simultaneously, which thus makes the design procedure systematic and straightforward. It does not involve any trial and error procedure, hence the difficulty of conventional approach can be avoided. The simulation results and discussions are given to demonstrate the efficiency of the proposed method.

  • PDF

A Derivation of ROM and Its Application to Design of Discrete PID Controller using DWT (DWT를 이용한 ROM 유도 및 이산 PID 제어기 설계에의 적용)

  • 김윤상;오현철;안두수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.579-584
    • /
    • 1998
  • This paper presents an efficient algorithm which determines the parameters of discrete PID controller. The proposed algorithm is an algebraic method to obtain controller parameters using ROM(Reduced Order Model), which can not only make design procedure simple but also reduce the computational burden required for controller implementation. Also, by solving a set of linear equations based on least squares method, the proposed method can make the controller design procedure systematic. Simple examples are given to demonstrate the effectiveness of our method when compared with widely-used conventional method.

  • PDF

Identification of the Relationship Between the Discrete TDCIM and the Discrete PID Controller (이산 TDCIM과 이산 PID 제어기 사이의 관계 규명)

  • Park, Sang Hyun;Jeong, Eui In;Shin, Dong Gwan
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Time-delay control with internal model (TDCIM) is the controller for robot manipulators that applies the time-delay estimation and the concept of internal model control (IMC). TDCIM is robust against unknown dynamics and non-linear friction like coulomb friction and static friction. It is simple and computationally efficient. This study presents the relationship between the discrete TDCIM and the discrete PID controller. The PID controller is the most popular control law in the real application. But often the PID controller can be difficult to achieve the desired level of control performance. The result in this study provides a good candidate solution to these situations.

Design of a Discrete Variable Structure Tracking Controller with Adaptive Feedforward Gains (적응 순방향 이득을 갖는 이산가변 구조추종 제어기의 설계)

  • 이성준;이강웅;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.262-268
    • /
    • 1988
  • In this paper conditions are derived, which ensure the existence of a quasi-sliding mode on the control switching hyperplane in discrete variable structure control systems and also remove the reaching phase problem observed in continuous-time variable structure systems. In addition, a discrete variable structure tracking controller which has adaptive properties is devised based on these results. This controller has useful properties, such as small sensitivity to the variation of plant parameters and to disturbances and its performing speed is fast compared to that of other adaptive controller.

  • PDF

Robust Stabilization of Discrete Singular Systems with Parameter Uncertainty and Controller Fragility (변수 불확실성과 제어기 악성을 가지는 이산 특이시스템의 강인 안정화)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents not only the robust stabilization technique but also robust non-fragile controller design method for discrete-time singular systems and static state feedback controller with multiplicative uncertainty. The condition for the existence of robust stabilization controller, the admissible controller design method, and the measure of non-fragility in controller are proposed via LMI(linear matrix inequality) approach. In order to get the maximum measure of non-fragility, the obtained sufficient condition can be rewritten as LMI optimization form in terms of transformed variable. Therefore, the presented robust non-fragile controller for discrete-time singular systems guarantees robust stability in spite of parameter uncertainty and controller fragility. Finally, a numerical example is given to show the validity of the design method.