• Title/Summary/Keyword: Discrete Design

Search Result 1,349, Processing Time 0.031 seconds

Discrete-Time Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2011
  • In the real-field of control cases for robot manipulators, there always exists a modeling error, which results the model has the uncertainties in its parameters and/or structure. In many modem applications, digital computers are extensively used to implement control algorithms to control such systems. The discretization of the nonlinear dynamic equations of such systems results in a complicated discrete dynamic equations. Therefore, it will be difficult to design a discrete-time controller to give good tracking performances in the presence of certain uncertainties. In this paper, a discrete-time sliding mode control algorithm for nonlinear and time varying robot manipulators with uncertainties is presented. Sufficient conditions for guaranteeing the convergence of the discrete-time SMC system are derived. As example simulations, the proposed SMC algorithm is applied to a two-link robotic manipulator with unknown dynamics. The results of the simulation indicate that the developed control scheme is effective in manipulators and electro-mechanical system control.

An Efficient and Easy Discretizing Method for the Treatment of Noise Factors in Robust Design

  • Lanzotti, Antonio;Vanacore, Amalia
    • International Journal of Quality Innovation
    • /
    • v.8 no.3
    • /
    • pp.188-197
    • /
    • 2007
  • In this work, an efficient and easy statistical method to find an equivalent discrete distribution for a continuous random variable (r.v.) is proposed. The proposed method is illustrated by applying it to the treatment of the anthropometrical noise factors in the context of Robust Ergonomic Design.

Design of discrete-time integral controllers for non-minimum phase plants via LTR techniques

  • Guo, Hai-Jiao;Ishihara, Tadashi;Takeda, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.622-627
    • /
    • 1994
  • In this paper, we discuss an application of LTR techniques to integral controller design for discrete-time non-minimum phase plant models. It is shown that the feedback property obtained by enforcing the conventional LTR procedure can be achieved by the partial LTR technique. In addition, we point out that the partial LTR technique provides more design freedom in shaping a target feedback property.

  • PDF

Stabilizing Supervisory Controller Design for Discrete Event Dynamic Systems (이산사건 동적 시스템의 안정화 관리 제어기의 설계)

  • Cha, D.K.;Lim, J.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.310-313
    • /
    • 1993
  • A design of stabilizing supervisory controller for discrete event dynamic systems(DEDS) is investigated in this paper. The notion of system stability is introduced for the supervisory control and the stable behavior is defined. A framework of stabilizing supervisory controller, which controls a given system to have stable behavior. is formulated and a design method is proposed for the stabilizing, supervisory controller.

  • PDF

Design of Multivalued Logic Functions Using $I^2L$ Circuits ($I^2L$회로에 의한 다식논리함수의 설계)

  • 김흥수;성현경
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.4
    • /
    • pp.24-32
    • /
    • 1985
  • This paper presents the design method for multivalued logic functions using $I^2L$ circuits. First, the a비orithm that transforms delta functions into discrete functions of a truncated difference is obtained. The realization of multivalued logic circuits by this algorithm is discussed. And then, the design method is achieved by mixing discrete functions and delta functions using the modified algorithm for given multivalued truth tables. The techniques discussed here are easily extended to multi-input and multi-output logic circuits.

  • PDF

Robust Controller Design by $\textrm{H}_\infty$ Method for a Launch Vehicle ($\textrm{H}_\infty$ 기법에 의한 발사체의 견실한 제어기 설계)

  • 이군석;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.463-468
    • /
    • 1992
  • In this paper, discrete-time H$_{\infty}$ controller design in .delta.- domaion using Normalized Coprime Factor plant description is proposed and the loop-shaping method developed by Mcfalane[2], which is known to be very simple and systematic method, is adopted here in H$_{\infty}$ controller design. In particular, we show that .delta.- H$_{\infty}$ controller proposed here is a unified form for the continuous and discrete-time cases.es.

  • PDF

Optimal output feedback design for discrete large scale systems with two time-scale separation properties

  • Jin, Jong-Sam;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.203-208
    • /
    • 1987
  • Design problem of output feedback controllers for discrete large scale systems using simplified model is investigated. It is shown that neglecting fast modes does not generally guarantee the stability of the closed loop system. In this paper, the design procedure is proposed to stabilize the system by minimizing a quadratic cost function for the simplified model and a measure of stability for the neglected fast model.

  • PDF

New Modularization Method to Design Supervisory Control of Automated Laboratory Systems (자동화 시스템의 관리제어 설계를 위한 새로운 모듈화 기법)

  • Jung, Taeyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.38-47
    • /
    • 2014
  • This paper describes the application of discrete event systems theory to the design of an automated laboratory system. Current automated laboratory systems typically consist of several interacting processes that must be carefully sequenced to avoid any possible process conflicts. Discrete Event Systems (DES) theory and Supervisory Control Theory (SCT) can be applied together as effective methods of modeling the system dynamics and designing supervisory controllers to precisely sequence the many processes that such systems might involve. Classical approaches to supervisory controller design tend to result in complex controller structures that are difficult to implement, maintain, and upgrade. In this paper, a new approach to designing supervisory controllers for automated laboratory systems is introduced. This new approach uses a modular controller structure that is easier to implement, maintain, and upgrade, and deals with "state explosion" issues in a novel and efficient way.

Synthesis of Ladder Diagrams for PLCs Based on Discrete Event Models (이산사건모델에 기반한 PLC 래더다이어그램 자동합성)

  • Kang, Bong-Suk;Cho, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.939-943
    • /
    • 2001
  • PLC(programmable Logic Controller)s essential components of modern automation systems encompassing almost every industry. Ladder Diagrams (LD) have been widely used in the design of such PLC since the LD is suitable for the modeling of the sequential control system. However, the synthesis of LD itself mainly depends on the experience of the industrial engineer, which may results in unstructured or inflexible design. Hence, in this paper, we propose a ladder diagram conversion algorithm which systematically produces LDs for PLCs based on discrete event models to enhance the structured and flexible design mechanism.

  • PDF

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.