• Title/Summary/Keyword: Discrete Continuity

Search Result 42, Processing Time 0.023 seconds

Two-dimensional DCT arcitecture for imprecise computation model (중간 결과값 연산 모델을 위한 2차원 DCT 구조)

  • 임강빈;정진군;신준호;최경희;정기현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.22-32
    • /
    • 1997
  • This paper proposes an imprecise compuitation model for DCT considering QOS of images and a two dimensional DCT architecture for imprecise computations. In case that many processes are scheduling in a hard real time system, the system resources are shared among them. Thus all processes can not be allocated enough system resources (such as processing power and communication bandwidth). The imprecise computtion model can be used to provide scheduling flexibility and various QOS(quality of service)levels, to enhance fault tolerance, and to ensure service continuity in rela time systems. The DCT(discrete cosine transform) is known as one of popular image data compression techniques and adopted in JPEG and MPEG algorithms since the DCT can remove the spatial redundancy of 2-D image data efficiently. Even though many commercial data compression VLSI chips include the DCST hardware, the DCT computation is still a very time-consuming process and a lot of hardware resources are required for the DCT implementation. In this paper the DCT procedure is re-analyzed to fit to imprecise computation model. The test image is simulated on teh base of this model, and the computation time and the quality of restored image are studied. The row-column algorithm is used ot fit the proposed imprecise computation DCT which supports pipeline operatiions by pixel unit, various QOS levels and low speed stroage devices. The architecture has reduced I/O bandwidth which could make its implementation feasible in VLSI. The architecture is proved using a VHDL simulator in architecture level.

  • PDF

Topic Continuity in Korea Narrative (한국 설화문에서의 화제표현의 연속성)

  • Hi-JaChong
    • Korean Journal of Cognitive Science
    • /
    • v.2 no.2
    • /
    • pp.405-428
    • /
    • 1990
  • Language has a social function to communicate information. Linguists have gradually paid their attention to the function of language since the nineteen sixties, especially to the relationship of form, meaning and the function. The relationship could be more clearly grasped through disciyrse-based analysis than through sentence-based analysis. Many researches were centered on the discourse functional notion of topic. In the early 1970's the subject was defined as the grammatiocalized topic the topic as a discrete single constituent of the clause. In the late 1970's several lingusts including Givon suggerted that the topic was not an atomic, disctete entity, and that the clause could have more than one topic. The purpose of the present study is, following Givon, to study grammatical coding devices of topic and to measure the relative topic continuity/discontinuity of participant argu, ents in Korean narratives. By so doing, I would like to shed some light on effective ways of communicating information. The grammatical coding devices analyzed are the following eight structures: zero-anaphora, personal pronous, demonstrative pronouns, names, noun phrases following demonstratives, noun phrases following possessives, definite noun phrases and indefinite referentials. The narrative studied for the count was taken from the KoreanCIA chief's Testiomny:Revolution and Idol by Hyung Wook Kim. It was chosen because it was assumed that Kim's purpose in the novel was to tell a true story, which would not distort the natural use of language for literary effect. The measures taken in the analysis wre those of 'lookback', 'persistence', ambiguity'. The first of these, 'lookback', is a measure of the size of gap between the previous occurrence of a referent and its current occurence in the clause. The meausure of persistence, which is a measure of the speaker's topocal intent, reflects the topic's importance in the discourse. The third measure is a measure of ambiguity. This is necessary for assessing the disruptive effects that other topics within five previous clauses may have on topic identification. The more other topics are present within five previous clauses, the more difficult is the task of correct identification of a topic. The results of the present study show that the humanness of entities is the most powerful factior in topic continutiy in narrative discourse. The semantic roles of human arguments in narrative discourse tend to be agents or experiences. Since agents and experiences have high topicality in discourse, human entities clearly become clausal or discoursal topics. The results also show that the grammatical devices signal varying degrees of topic continuity discontinuity in continuous discourse. The more continuous a topic argument is, the less it is coded. For example, personal pronouns have the most continutiy and indefinite referentials have the least continutiy. The study strongly shows that topic continuity discontinutiy is controlled not only by grammatical devices available in the language but by socio-cultural factors and writer's intentions.

A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network (이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구)

  • Yoo, JiHoon;Min, Byeongjun;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2021
  • As damages to individuals, private sectors, and businesses increase due to newly occurring cyber attacks, the underlying network security problem has emerged as a major problem in computer systems. Therefore, NIDS using machine learning and deep learning is being studied to improve the limitations that occur in the existing Network Intrusion Detection System. In this study, a deep learning-based NIDS model study is conducted using the Convolution Neural Network (CNN) algorithm. For the image classification-based CNN algorithm learning, a discrete algorithm for continuity variables was added in the preprocessing stage used previously, and the predicted variables were expressed in a linear relationship and converted into easy-to-interpret data. Finally, the network packet processed through the above process is mapped to a square matrix structure and converted into a pixel image. For the performance evaluation of the proposed model, NSL-KDD, a representative network packet data, was used, and accuracy, precision, recall, and f1-score were used as performance indicators. As a result of the experiment, the proposed model showed the highest performance with an accuracy of 85%, and the harmonic mean (F1-Score) of the R2L class with a small number of training samples was 71%, showing very good performance compared to other models.

Composite Finite Element Analysis of Axisymmetric Layered Systems (축대칭 층구조체의 복합이론 및 유한요소해석프로그램의 개발)

  • Lim, Chong Kyun;Park, Moon Ho;Kim, Jin Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.29-38
    • /
    • 1994
  • Linear composite theory as well as a finite element program is developed for axisymmetric elastomeric bearings. This study is limited to axisymmetrically loaded horizontal layered systems with linear, elastic, small' deformation conditions. A multiscale method is used in the development of the composite theory which enables us to model inhomogeneous layered composites as equivalent homogeneous, orthotropic material. Only continuity of the prime variables is required for the finite element analysis, allowing the use of simple $C_o$ elements whereas rather complicated theories presented in the past need more requirements. Four node isoparametric elements are used in the study. The developed theory of this paper is limited to linear conditions, however, the analysis can be extended to nonlinear behavior of flexible material in elastomeric bearing by using multiscale method presented here. Two numerical examples are examined and compared to the results of discrete and previously obtained composite analysis to verify the theory.

  • PDF

Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

  • Cheong, Hyeong-Bin;Kong, Hae-Jin
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.393-401
    • /
    • 2013
  • Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell's center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.

A Smart DTMC-based Handover Scheme Using Vehicle's Mobility Behavior Profile (차량의 이동성 행동 프로파일을 이용한 DTMC 기반의 스마트 핸드오버 기법)

  • Han, Sang-Hyuck;Kim, Hyun-Woo;Choi, Yong-Hoon;Park, Su-Won;Rhee, Seung-Hyuong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.697-709
    • /
    • 2011
  • For improvement of wireless Internet service quality at vehicle's moving speed, it is advised to reduce the service disruption time by reducing the handover frequency on vehicle's moving path. Particularly, it is advantageous to avoid the handover to cell whose dwell time is short or can be ignored in terms of service continuity and average throughput. This paper proposes the handover scheme that is suitable for vehicle in order to improve the wireless Internet service quality. In the proposed scheme, the handover process continues to be learned before being modeled to Discrete-Time Markov Chain (DTMC). This modeling reduces the handover frequency by preventing the handover to cell that could provide service sufficiently to passenger even when vehicle passed through the cell but there was no need to perform handover. In order to verify the proposed scheme, we observed the average number of handovers, the average RSSI and the average throughput on various moving paths that vehicle moved in the given urban environment. The experiment results confirmed that the proposed scheme was able to provide the improved wireless Internet service to vehicle that moved to some degree of consistency.

Mobility Management Scheme for Vehicles Moving Repeated Path (반복 경로를 운행하는 차량의 이동성 관리 기법)

  • Choi, Gyu-Yeon;Han, Sang-Hyuck;Lee, Jung-Girl;Choi, Yong-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.104-111
    • /
    • 2012
  • It is advantageous to avoid the handover to cell whose dwell time is short or can be ignored in terms of service continuity and average throughput. This paper proposes the handover scheme that is suitable for vehicle in order to improve the wireless Internet service quality. In the proposed scheme, the handover process continues to be learned before being modeled to Discrete-Time Markov Chain (DTMC). This modeling reduces the handover frequency by preventing the handover to cell that could provide service sufficiently to passenger even when vehicle passed through the cell but there was no need to perform handover. In order to verify the proposed scheme, we observed the average number of handovers, the average RSSI and the average throughput on various moving paths that vehicle moved in the given urban environment.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Principles of Simulated Moving Bed Reactor(SMBR) (Simulated Moving Bed Reactor(SMBR)의 원리)

  • Song, Jae-Ryong;Kim, Jin-Il;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • Simulated Moving Bed(SMB) process consists of multiple chromatographic columns, which are usually partitioned into four zones. Such a process characteristic allows a continuous binary separations those are impracticable in conventional batch chromatographic processes. Compared with batch chromatography, SMB has advantages of continuity, high purity and productivity. Various researches have been reported for the integration of reaction and recovery during process operation on the purpose of economics and effectiveness. Simulated Moving Bed Reactor(SMBR) is introduced to combine SMB as a continuous separation process and reactor. Several cases of SMBR have been reported for diverse reactions with catalytic, enzymatic and chemical reaction on ion exchange resin as main streams. With an early type of fixed bed using catalyst, SMBR has been developed as SMB using fluidized enzyme, SMB with immobilized enzyme and SMB with discrete reaction region. For simple modeling and optimization of SMBR, a method considering convection only is possible. A complex method considering axial dispersion and mass transfer resistance is needed to explain the real behavior of solutes in SMBR. By combining reaction and separation, SMBR has benefits of lower installation cost by minimizing equipment use, higher purity and yield by avoiding the equilibrium restriction in case of reversible reaction.

Topology Optimization of Incompressible Flow Using P1 Nonconforming Finite Elements (P1 비순응 요소를 이용한 비압축성 유동 문제의 위상최적화)

  • Jang, Gang-Won;Chang, Se-Myong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1139-1146
    • /
    • 2012
  • An alternative approach for topology optimization of steady incompressible Navier-Stokes flow problems is presented by using P1 nonconforming finite elements. This study is the extended research of the earlier application of P1 nonconforming elements to topology optimization of Stokes problems. The advantages of the P1 nonconforming elements for topology optimization of incompressible materials based on locking-free property and linear shape functions are investigated if they are also valid in fluid equations with the inertia term. Compared with a mixed finite element formulation, the number of degrees of freedom of P1 nonconforming elements is reduced by using the discrete divergence-free property; the continuity equation of incompressible flow can be imposed by using the penalty method into the momentum equation. The effect of penalty parameters on the solution accuracy and proper bounds will be investigated. While nodes of most quadrilateral nonconforming elements are located at the midpoints of element edges and higher order shape functions are used, the present P1 nonconforming elements have P1, {1, x, y}, shape functions and vertex-wisely defined degrees of freedom. So its implentation is as simple as in the standard bilinear conforming elements. The effectiveness of the proposed formulation is verified by showing examples with various Reynolds numbers.