• Title/Summary/Keyword: Discrete Approximation

Search Result 247, Processing Time 0.026 seconds

Discrete model reduction over disc-type analytic domains (디스크형태의 해석적영역을 가지는 이산모델 차수축소)

  • 오도창;정은태;이갑래;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.27-34
    • /
    • 1998
  • This paper is on the discrete model reduction method over disc-type analytic domains. We define hankel singular value over the disc that is mapped by standard bilinear mapping. And the generalized singular perturbation approximation and the direct truncation are generalized to GSPA and DT over a disc. Furthermore, it is shown that the reduced order model over a smaller domaing has a smaller .inf.-norm error bound. And the poposed reduction method is used to obtain the regional pole placement property.

  • PDF

Simulation Study of Discrete Event Systems using Fast Approximation Method of Single Run and Optimization Method of Multiple Run (단일 실행의 빠른 근사해 기법과 반복 실행의 최적화 기법을 이용한 이산형 시스템의 시뮬레이션 연구)

  • Park, Kyoung Jong;Lee, Young Hae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event simulation. The developed algorithm uses the configuration algorithm that can change decision variables and the stopping algorithm that can end simulation in order to satisfy the given objective value during single run. It tries to estimate an auto-regressive model for evaluating correctly the objective function obtained by a small amount of output data. We apply the proposed algorithm to M/M/s model, (s, S) inventory model, and known-function problem. The proposed algorithm can't always guarantee the optimal solution but the method gives an approximate feasible solution in a relatively short time period. We, therefore, show the proposed algorithm can be used as an initial feasible solution of existing optimization methods that need multiple simulation run to search an optimal solution.

Free vibration analysis of composite conical shells using the discrete singular convolution algorithm

  • Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.353-366
    • /
    • 2006
  • The discrete singular convolution (DSC) algorithm for determining the frequencies of the free vibration of single isotropic and orthotropic laminated conical shells is developed by using a numerical solution of the governing differential equations of motion based on Love's first approximation thin shell theory. By applying the discrete singular convolution method, the free vibration equations of motion of the composite laminated conical shell are transformed to a set of algebraic equations. Convergence and comparison studies are carried out to check the validity and accuracy of the DSC method. The obtained results are in excellent agreement with those in the literature.

Development of the Discrete-Ordinates, Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation

  • Noh, Taewan
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.605-617
    • /
    • 2000
  • Nodal transport methods are studied for the solution of two dimensional discrete-ordinates, simplified even-parity transport equation(SEP) which is known to be an approximation to the true transport equation. The polynomial expansion nodal method(PEN) and the analytic function expansion nodal method(AFEN)which have been developed for the diffusion theory are used for the solution of the discrete-ordinates form of SEP equation. Our study shows that while the PEN method in diffusion theory can directly be converted without complication, the AFEN method requires a theoretical modification due to the nonhomogeneous property of the transport equation. The numerical results show that the proposed two methods work well with the SEP transport equation with higher accuracies compared with the conventional finite difference method.

  • PDF

A Meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds

  • Wu, C.T.;Koishi, M.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.129-151
    • /
    • 2009
  • This paper presents a meshfree procedure using a convex generalized meshfree (GMF) approximation for the large deformation analysis of particle-reinforced rubber compounds on microscopic level. The convex GMF approximation possesses the weak-Kronecker-delta property that guarantees the continuity of displacement across the material interface in the rubber compounds. The convex approximation also ensures the positive mass in the discrete system and is less sensitive to the meshfree nodal support size and integration order effects. In this study, the convex approximation is generated in the GMF method by choosing the positive and monotonic increasing basis function. In order to impose the periodic boundary condition in the unit cell method for the microscopic analysis, a singular kernel is introduced on the periodic boundary nodes in the construction of GMF approximation. The periodic boundary condition is solved by the transformation method in both explicit and implicit analyses. To simulate the interface de-bonding phenomena in the rubber compound, the cohesive interface element method is employed in corporation with meshfree method in this study. Several numerical examples are presented to demonstrate the effectiveness of the proposed numerical procedure in the large deformation analysis.

An Investigation on the Computing Offsets of Free form Curve using the Biarc Approximation Method (이중원호 근사법을 이용한 자유형상곡선의 오프셋 계산에 관한 연구)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.76-83
    • /
    • 2005
  • In this study a general method for computing offsets of free form curves is presented. In the method arbitrary free form curve is approximated with point series considering required tolerance. The point series are offset precisely using the normal vectors computed at each point and loop removal is carried out by the newly suggested algorithm. The resulting offset points are transformed to lines and arcs using the biarc approximation method. Tangent vectors for approximation of discrete points data are calculated by traditional local interpolation scheme. In order to show the validity and generality of the proposed method , various of offsettings are carried our for the base curves with complex shapes.

A Blind Watermarking Technique Using Difference of Approximation Coefficients in Wavelet Domain (웨이블렛 영역에서 근사 계수의 증감정보를 이용한 블라인드 워터마크)

  • 윤혜진;최태선
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.65-72
    • /
    • 2004
  • In this paper, we propose a new blind image watermarking method in wavelet domain. It is necessary to find out watermark insertion location in blind watermark. To select the watermark embedding locations, we use the increment and decrement information of the successive approximation coefficients after discrete wavelet transformed. In order to evaluate the proposed algorithm we embed watermark into test images and detect the watermark after attacks like JPEG lossy compression and performing of various liters. Experimental results show that the proposed method is robust against various kinds of attacks and still remains transparency.

CORRELATION DIMENSIONS OF QUASI-PERIODIC ORBITS WITH FREQUENCIES CIVEN BY QUASI ROTH NUMBERS

  • Naito, Koichiro
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.857-870
    • /
    • 2000
  • In this paper, we estimate correlation dimensions of discrete quasi periodic ordits with frequencies, irrational numbers, which are called quasi Roth numbers. We specify the lower estimate valuse of the dimensions by using the parameters which are derived the rational approximable properties of the quasi Roth numbers.

  • PDF

FINITE ELEMENT APPROXIMATION OF THE DISCRETE FIRST-ORDER SYSTEM LEAST SQUARES FOR ELLIPTIC PROBLEMS

  • SHIN, Byeong-Chun
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.563-578
    • /
    • 2005
  • In [Z. Cai and B. C. Shin, SIAM J. Numer. Anal. 40 (2002), 307-318], we developed the discrete first-order system least squares method for the second-order elliptic boundary value problem by directly approximating $H(div){\cap}H(curl)-type$ space based on the Helmholtz decomposition. Under general assumptions, error estimates were established in the $L^2\;and\;H^1$ norms for the vector and scalar variables, respectively. Such error estimates are optimal with respect to the required regularity of the solution. In this paper, we study solution methods for solving the system of linear equations arising from the discretization of variational formulation which possesses discrete biharmonic term and focus on numerical results including the performances of multigrid preconditioners and the finite element accuracy.

Discrete Choice Dynamic Pricing and Seat Control Problem in Airlines (항공사 이산형 동적가격 결정 및 좌석통제 문제)

  • Yoon, Moon-Gil;Lee, Hwi-Young;Song, Yoon-Sook
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.91-103
    • /
    • 2012
  • Revenue management problems originated in the 1970's in the context of the airline industry have been successfully introduced in airline industries. It has started on the capacity control by booking classes for available seats, and has been recognized as a powerful tool to maximize the total revenue. Changing customer behavior and airline market environments, however, has required a new mechanism for improving the revenue. Dynamic pricing is one of innovative tools which is to adjust prices according to the market status. In this paper, we consider a dynamic pricing and seat control problem for discrete time horizon. The problem can be modeled as a stochastic programming problem. Applying the linear approximation technique and given the price set for each time, we suggest a mixed Integer Programming model to solve our problem efficiently. From the simulation results, we can find our model makes good performance and can be expanded to other comprehensive problems.