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CORRELATION DIMENSIONS OF
QUASI-PERIODIC ORBITS WITH FREQUENCIES
GIVEN BY QUASI ROTH NUMBERS

KoicHirO NAITO

ABSTRACT. In this paper, we estimate correlation dimensions of
discrete quasi periodic orbits with frequencies, irrational numbers,
which are called quasi Roth numbers. We specify the lower esti-
mate values of the dimensions by using the parameters which are
derived from the rational approximable properties of the quasi Roth
numbers.

1. Introduction

In our previous papers, we have estimated box dimensions ([1], [2],
[3]) or correlation dimensions ([4]) for quasi periodic orbits by using
Diophantine approximations. In the present paper we also consider a
two-frequency q.p. function from R to a Banach space X given by

f(t) = g(wt, )

where the frequency w : w > 1 is an irrational number and ¢ : R x
R — X is 1-periodic with respect to each variable. Our purpose is to
estimate correlation dimensions for the sequence, given by a Poincaré
section of f(t),

T = {p(n) : p(n) = f(n7) = g(n,Tn), n=0,1,2,.} C X, 7=1/w.

In [4], we have already shown the lower estimate of the correlation
dimension under the two Holder conditions, the usual type and the re-
verse inequality type, on the function g. In the present paper, we can
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show the lower estimate under only the reverse inequality condition
and simplify its proof. In [4], we have also specified the lower estimate
values of the correlation dimensions by using the parameters which are
derived from the algebraic properties of the frequencies, exactly, the
rational approximable properties of the irrational frequencies. In the
present paper, for the irrational numbers called quasi Roth numbers,
which have not so badly approximable properties by rational numbers,
we can give further examples and characterize the approximable prop-
erties by using the Diophantine approximations.

We consider the following cases, which are classified by the rational
approximable properties of the frequency.
(i) Constant type; there exists a constant ¢y > 0 such that
(1.1) Ir-L1>%

¢ ¢

for every positive integers r, q.
(ii) Quasi Roth number type; there exists a constant op > 0 such that

for every a > oy there exists a constant ¢, > 0 which satisfies
™ Cq

(1.2) Ir — 5\ > o

for every positive integers 7, g.
(iii) Roth number type; for every ¢ > 0, there exists a constant ¢, > 0
which satisfies

.
(1.3) =212 o

Ce

for every positive integers r, g.

REMARK. The irrational numbers of constant type are also called
“badly approximable” numbers and Roth numbers are also called the
numbers with good Diophantine properties.

DEFINITION OF CORRELATION DIMENSION. Let S = {z1, zo, ...,
Zpn, --.... } be an infinite sequence of elements in X and, for a small

number £ > 0, define
n

N(e )—hmmf— Z (e — |z — z5)),

2,7

n

N() = hmsup Z (e = |lzs — z;|1),

n—roo
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where H(-) is a Heaviside function:

1 a>0
H() - {

0 a<0
and if the limit exits, N(¢) := N(¢) = N(¢). The upper and lower
correlation dimension of S, C(S) and C(S), are defined as follows:

C(S) = limsup log ﬂ(s),
€l0 loge

C(S) = liminf log N(e)
el0 loge

If N(e) exists and C(S) = C(S), we say that S has the correlation
dimension C(S) = C(S) = C(S).

As in our pervious papers, assuming Hélder’s continuity on the func-
tion g(-,-), we estimate the dimensions by using Holder’s exponents.

(G1) There exist constants §,¢; : 0 < d < 1,¢; > 0:
l9(t,s) —g(t',s)| < exft — 1),
lg(t,s) — g(t,s")| < e1|s - s'|°, t,t',s,s €R
(G2) There exist constants §,¢c2 : 0 < § < 1,¢c0 > 0:
l9(t, s) — g(t', s)| > calt — 1),

lg(t,s) — g(t,8")| > cals = §'|%, t,t/,s,8 €R:|t—t|,|s —s'| <1/2.

The plan of this paper is as follows; In section 2, we estimate the
correlation dimensions in the case (ii) and then (i) and (iii). In section
3, we introduce some examples of Roth and quasi Roth numbers.
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2. Correlation dimension of quasi Roth numbers case

Consider the following continued fraction of the number 7:

(2.1) r= ! (as € N)

as +

aq + ....

and take the rational approximation as follows. Let mg = 1,ng =
0,m_1 =0,n_1 = 1 and define the pair of sequences of natural num-
bers

(2.2) m; = a;mi—1 + m;_2,

ng = an;_1+n;2, 21,
then the elementary number theory gives the Diophantine approxima-
tion

1
mi(Mmit1 + my)

n; 1 1
<|Jr——=|< ——< =
m; m;mi4+1 m;

(2.4)

where the sequence {n;/m;} is the best approximation in the sense
that n ,
1
T < |r— -
-2l

holds for every rational 7/l : | < m,.
First we consider the case (ii) quasi Roth number type with (1.2).
Then we can obtain the following estimate:

Co

(2.5) lp(m) — e(n)]| = caf )’y Va>ag

|m — n|ite

for every m,n € N : m # n. In fact, since we can find an integer n':

].

!/
_ — <_
|mT — nr — /| 5
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(in case m > n), Hypothesis (G2) and the periodicity of g yield the
following estimates.

le(m) — o)l = llg(m, m7) — g(n, n7)|
= llg(m,m7 —n) — g(m, n7)|

> ¢o|(m —n)r —n/|°.

Thus (1.2) yields (2.5).

For the case of the constant type (i), it is well known (cf. [6]) that
the uniform boundedness of the sequence {a;} is equivalent to the
property (1.1). On the other hand, by using the increasing sequence
{m;}, we can show an equivalent condition to the badly approximable
property of quasi Roth numbers.

(B) There exist constants 3, K > 0:
(26) mj+1 < Km;"'ﬁ, V]
We can show the following lemmas.

LEMMA 1. If the condition (B) is satisfied for an irrational number
T, then 7 is a quasi Roth number for the constant

(2.7) ap = B(6 +3).

Proof. For every positive integer [, there exists a number j:
(2.8) mj_1 <1 <m; < Kmil < KIFL,
Since n;/m; is a best approximation of 7, we have

r ng
o= 21> = 2L
J

1
>
(Mmjt1 +m;)m;
1 c
> >
2mjam; — mft?

¢
1(B+1)(B+2)
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where we denote by ¢ a suitable constant in each term. Thus for every
rational number 7/l we have

c

,
29) =712 e 0

LEMMA 2. If 7 is a quasi Roth number, then for every B8 > ag,
there exists Kg > 0 which satisfies (B):

(2.10) mjy1 < Kgm}™P, v,

Proof. It follows from the definition of quasi Roth numbers that,
for every B > ap, there exists Kz > 0:

-1

K ) 1
(2.11) o Sl = 2 <
m; mi M1y
Thus we obtain the conclusion. O

For the quasi periodic sequence ¥ = {¢(n) : n € N}, we can esti-
mate its correlation dimension from below.

THEOREM 1. Assume Hypotheses (ii) and (G2). Then we have

c(x) > !

Proof. Let k,i: k < i be sufficiently large numbers and consider a
small positive constant €, given by

1
Ek = ( 6.
Me41
It follows from Lemma 2 that
1 s 1 s
€ = >
k41 (mk+2 Kmitoo )

k+1
— 0. .1tao
=K ¢,
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where it is sufficient to consider the case 0 < K < 1. In fact, for every
B : B > ag, from Lemma 2 we obtain

(2.13) mip1 < (Km$P)mi*?, V5> jo

for some jo. Then we can substitute K by a sufficiently small K ma° A
Following the argument below, we can obtain the conclusion for every

806> ag.

Let a; > 0; a1 > ag, be a constant, which satisfies
(2.14) a1 +1> (L+ag)?,

and, take a small constant ¢ : 5k+°° < e < ;T Then, since we have

(2.15) prgo > (K—5)1+aos§cl+ao)2 > (K~8)ttaoglter

there exists a constant o : ag < o < a1, which satisfies
(2.16) g = (K 9)ttaogte,

Now, consider an e-neighborhood of ¢(1), say B., in X. Then, for
a large integer n € N, we estimate an upper bound of the number of
the elements ¢(1),1 € I, = {1, ...,n}, which satisfy () € B.:

M,(e) .= #{p(l) € B : L€ I,,}.

Assume that ¢(n;) € B, for some n; € I,,. Then, for any m € I,,, m #
ni, we can estimate

le(m) — oWl > lle(m) = ra)ll = llp(na) — (V)]

1
> CzCi(m)(1+a)6 - &, Va > ap.

It follows that, if

1

—____)(H—a)é > 9%
|m — nq| -

Czci(
— 2(K )1+a061+a

— 2(K )1+ao (mk+1 )6(1+a)
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that is, if
Im —ny| < c“""( 22)—<1+1a—)5 (K“S)‘_"‘(iii:)s Mkt1,

then ¢(m) ¢ B.. Thus the numbers of the elements, which are in the
neighborhood, satisfy
Ma(e) < ca ™ ()~ Fem (K ~9) 055 m, }

-1
< Mom4n,

MO = sup c;ﬁ(%)—m(K_a)'(i—:%

ae<la<ay

Following the argument above for each e-neighborhood ¢(I),! € I,, we

have
n

- 3 H = o = pm) ) < nMy(e) =

m:

Mn(é').

Thus we have

L3 He o) - pm)l) < Ma(—)

l =1 Mig+1

= Mos,%
= Mo((K %)™ (+e0e)mwem
< MoK eTFens

It follows that

N(e )—hmsup Z H(e - |lo(l) — o(m)])) < ceTTHaD)

n—o0o
l,m=1

for every € > 0. From the definition, we obtain

C(%) = liminf 28N

el0 loge
1
.. logeedCtan)
> liminf ogce T
el0 loge

1



Correlation dimensions of quasi-periodic orbits 865

which completes the proof. O

For the case of Roth numbers, it follows from Theorem 1 that we
can estimate its dimension from below by ag — 0.

THEOREM 2. Assume (iii) and Hypothesis (G2). Then we have

1

(2.18) o) > 5.

Next we consider the relation between the box counting dimen-
sion Dp and the correlation dimension C. For a subset § C X, let
M.(S), € > 0, denote the minimum number of balls of X with its
radius € which is necessary to cover the subset S. The box dimension
of S is the number

_ . log M(S)
(2.18) D5p(S) = lim og1/s

Furthermore, Dp and Dp can be also defined by limsup,liminf as
e — 0, respectively. By using the well known relation between the
box dimension and the correlation dimension, we can obtain the exact
values of these dimensions in (i) the constant type case and (iii) the
Roth numbers case.

COROLLARY 1. Assume Hypotheses (G1), (G2) and (iii). Then we
have

(2.19) Dp(X)=C(2) =

Proof. In [1], we have obtained the upper bound of the box dimen-
sion;

(2.20) > Dp(%).

S| =

Thus it is sufficient to show that

(2.21) DB(S) > C(9)
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for an infinite sequence S = {zy, z2, ..., Tn, ...}, Which is relatively com-
pact. Define S, = {z1,z2,...,2,}. For a small € > 0, instead of
M_(S), to estimate the box dimension, we can use the largest number,
say L.(S), of disjoint balls of radius € with centers in S (see [5]). On
the other hand, we can take L,, disjoint balls of radius € with its cen-
ters, say {zi,,Zi,, .-, Ti,, }, il Sp, which admit the property that there
exists a constant ¢ : 0 < ¢ < 1 which satisfies

Ly
Zj:l l.7

n

c < <1

for every large n, where, for each e-ball, I; denotes the number of the
elements of B(zi;) N S,. Then we have

L, Ly
Soh<n, NL(S) 238
=1 =1

where N2 (S,,) := Y0 ._, H(2¢ — |z; — z;]|). It follows that

i,5=1
L, Ly,
NE(Sn)Ln > (Y1) Ln > 1)
i=1 =1

Thus we have

L
ol
%N&(Sn) > L—l(-ZJ—T—L]‘—J)2 > Le(S)7 e,

since L, is the largest number. Taking the limit as n — oo, we have
N,.(8) 2 Le(8)7'e?.
It follows that

log Le(S)e® _ log Ny (S) _ log Ny (S)
—loge ~ loge  log2e—log2’

By taking the limsup as ¢ — 0 of the both side terms above, we obtain
(2.21). O
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3. Examples of quasi Roth numbers

In this section, we introduce some examples of quasi Roth numbers
and Roth numbers.

LEMMA 3. Let {a;} be the partial quotients in the continued frac-
tion expansion of T. Assume that, for a given constant € > 0, there
exists a constant C, > 0, which satisfies
(3.1) aj.Ha? < CE(aj_laj_g ces a1)s, Vj.

Then we have
(3.2) T —=| > ——

where ¢, = 1/(16C;).

Proof. Let | be a positive integer, then there exists a number j :
m;_1 <1 <m; and we have

(3.3) mj—1 <1 <my < (a; +1)mj_y < (a; + 1)L

Since n;/m; is the best rational approximation, it follows from (3.3)
that we have

r n; 1
T—=|2r——|>
! mj ~ (Mjp1 +mg)m;
1 1

~ 2(aj41 + 1)m? = 2(aj4+1 + 1)(a; + 1)212
for every 7 € N. Since
(aj+1 +1)(a; +1)* < 8aj11af,
it follows from (3.1) that

(aj+1 + 1)(aj + 1)2 < 8C’€(aj_1aj_2 v al)e.
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On the other hand, we can estimate

l>mj_1>aj_1mj2 2"
2 Q1052 Q1Mo

= aj'_laj—2 e a’l'

Thus we obtain the conclusion. a
In the following examples, we can show that the properties of the
rational approximation heavily depend on the growth rates of the con-

tinued fraction expansions {a;}. For two sequences {a;} and {b;}, we
write a; ~ b; if there exist constants cy,cz > 0 such that

Clbj <a; < Czbj.

ExXAMPLE 1. If a; ~ j¢, a >0, then 7 is a Roth number.
In fact, for every € > 0 there exists d.:

(3.4) G+ e ™ <d(G-1), Vi
It follows that
. =1 «
A+ 1% <dife,” (-1

and we have
a?-+1 < d;(aj_laj_g < al)e.
Thus we can apply Lemma 3 for every € > 0.

EXAMPLE 2. If a; ~ K7, K > 1, then 7 is also a Roth number.

In fact, for every € > 0 there exists j.:
log e ¢ . LY
ch(3+%sKL)’E+1 < cl”ngJ_il'&‘?

Put .
lo; = .
d. = ch(3+%‘)]e+1_
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Then we have
SKIT < d (KT K2KY)E, Y,

which yields Hypothesis of Lemma 3.

ExXAMPLE 3. If a1 ~ mf , >0, then Hypothesis (B) is satisfied
and it follows from Lemma 1 that 7 is a quasi Roth number: oy =

BB+ 3).

EXAMPLE 4. Here we consider the case that the growth rate of a;
has the order M*', M,k > 1.

THEOREM 3. For constants ¢j,co, M,k : M,k > 1, a > 1,
assume that the partial quotients in the continued fraction expansion
of T satisfies

(35) ClMK'j <a; < Cg(Ma)nj.
Then T is a quasi Roth number: oy = (k — 1)(k + 2)a.

Proof. First we consider the case ¢; > 1. Let € > (k — 1)(k + 2)a,
then we have

K

(k71 —1)e+

K

€

k—1 k—1

K le

k=1
> k! Hk + 2)a

It follows that

®

(Ma)){j+l (Ma)2nj < Mn_leM(~1+,g2+...+nj—1)€-

Thus we can apply Lemma 3, since we have
- .
afaji1 < (M) (M)
< EMRETE YU R s e

S Cs(alag s aj_l)“’.
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Next we consider the case 0 < ¢; < 1. Take a constant r : 0 < 7 <

1, Mr > 1 and put m = Mr. Then, for a large jo, we have
a(r ) > 1
and ‘ 4 ,
Cc1 (’r'_l)NJO m"] <a; < CzManJ

for every j > jo. Since

M% = m® log M/(log M+logr)
it follows from the above argument that there exists a constant Cy:

aj+1a? S C’é(alag s aj_l)e
for every j > jo and for every €, which satisfies

log M
. > Do —2
(3.6) €2 (n+2)(k—1e log M +logr
Put
C. = jzrilaxjo{Cé, aj+1a§/(a1a2 ceeajor) )

Then we can apply Lemma 3. Since (3.6) holds for every 7: 0 <7 <1

and Mr > 1, we can conclude that
ap = (k+2)(k — 1)a.
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