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FINITE ELEMENT APPROXIMATION OF
THE DISCRETE FIRST-ORDER SYSTEM
LEAST SQUARES FOR ELLIPTIC PROBLEMS

ByronGg CHUN SHIN

ABSTRACT. In {Z. Cai and B. C. Shin, SIAM J. Numer. Anal. 40
(2002), 307-318], we developed the discrete first-order system least
squares method for the second-order elliptic boundary value prob-
lem by directly approximating H(div) N H(curl)-type space based
on the Helmholtz decomposition. Under general assumptions, error
estimates were established in the L? and H* norms for the vector
and scalar variables, respectively. Such error estimates are opti-
mal with respect to the required regularity of the solution. In this
paper, we study solution methods for solving the system of linear
equations arising from the discretization of variational formulation
which possesses discrete biharmonic term and focus on numerical
results including the performances of multigrid preconditioners and
the finite element accuracy.

1. Introduction

In recent, there are substantial interest in the use of least-squares
methods for numerical approximation of partial differential equations
and system. In [5], we recently developed a discrete first-order system
least squares (FOSLS) for the following scalar second-order elliptic par-
tial differential equations:

-V - -(AVp)+b-Vp+cp = f in
(1.1) D 0 on TIp,
n- (AVp) 0 on Iy
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where  is a bounded, open, and simply connected domain in ®? with
Lipschitz boundary 92; A is 2 x 2 uniformly symmetric positive definite
matrix of functions in L*°(Q2); b and c are the respective vector and
scalar functions in L®(2); f € L*(Q) is a given scalar function; Q) =
I'p UT'y is the partition of the boundary of ©; and n is the outward
unit vector normal to the boundary. For simplicity, assume that both
I'p and T'y are nonempty, with the obvious generalization to quotient
spaces when one of them is empty.

The limitation of L?(Q)-norm FOSLS given in [4] is the requirement
of sufficient smoothness of the underlying problem. Such smoothness
implies the equivalence between homogeneous FOSLS functional and
product H'(Q)-norm (See [4] for detail). But, when the domain § is not
smooth or not convex or the coefficient A is not continuous, we can not
guarantee such equivalence. The discrete first-order system least squares
method for the second-order elliptic boundary value problem developed
in [5] is using the direct approximating H(div) N H(curl)-type space
based on the Helmholtz decomposition. Under general assumptions,
error estimates were established in the L? and H! norms for the vector
and scalar variables, respectively. Such error estimates are optimal with
respect to the required regularity of the solution. In this paper, we study
solution methods for solving the system of linear equations arising from
the discretization of variational formulation for the discrete least squares
method given in [5] which possesses discrete biharmonic term. We also
focus on the numerical results including the performances of multigrid
preconditioners and the finite element accuracy.

The paper is organized as follows. The L?-norm version of the FOSLS
approach are introduced in section 2, along with some notations. The
discrete FOSLS approach is developed in section 3. In section 4, we dis-
cuss the implemention issues. Finally, we report numerical experiment
results in section 5.

2. First-order system least squares (FOSLS)
We assume that A is uniformly symmetric positive definite and scaled
appropriately, that is, there exist positive constants
0<A<1I<A
such that
(2.1) AeTE < eTAE < AETE
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for all £ € R2 and almost all z € Q.

We use standard notation and definitions for the Sobolev spaces
H*(Q)?, associated inner products (-, -)s, and respective norms || - ||s,
s > 0. (We suppress the designation 2 on the inner products and norms
because dependence on region is clear by context.) H®(Q)? coincides
with L2(Q)?, in which case the norm and inner product will be denoted
by || - || and (-, -), respectively. Define subspaces of H(f)

HLE(Q)={qec H(Q): ¢=00nTp}
and
HY(Q)={qe HY(Q): ¢g=00nTy}.
Let H;'(Q) denote the dual of HL(Q2) with the norm defined by

(¢, ¥)
ol =10y = sup :
Hp (@) oxvend @) 1Pl

Denote the curl operator in %2 by
Vx = (=02, 1)

1_{ 0
e (5)

H(div A7;Q) = {v e L}(Q)?: V- (Azv) € L2 (Q)}

and its formal adjoint by

Let

and
H(curl A2;0Q) = {v € L)% : Vx(A~2v) € L3 ()},
which are Hilbert spaces under norms

IVl e ady = (V1P + 19+ (43v) 1)

N

and

¥y by = (19 (47E) ).

respectively. When A is the identity matrix, we use the simpler notations
H(div; Q) and H(curl;2). Define the subspaces

Ho(div A%;Q) = {v € H(div A2;Q) : n- (A2v) =0 on 'y}
1
2

and denote by
U = Hy(div A%;Q) N Ho(curlA‘%; ),
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where 7T represents the unit vector tangent to the boundary oriented
counterclockwise.
Introducing an independent vector variable

u = A3 Vp,

by using the homogeneous Dirichlet boundary condition on I'p we have
that

VX(A_%u)zo inQ and T-(A_%u)zo on I'p.

Then an equivalent extended system for problem (1.1) is

( u—A%Vp = 0 in £

~V-(A2u)+b-(A2u)+cp = f in

V x (A_%u) = 0 in

2.2 ’
(22) p = 0 on Tp,
n~(A%u) = 0 on I,
{ T~(A_%u) = 0 on Ip.

Define the first-order system least-squares functional as follows:
G(v,qif) = If + V- (43v) = b (A72v) - cq|?
v = A3 Vgl? + [V x (A7)
for (v,q) € U x H5(Q). Then the FOSLS variational problem for (1.1)

is to minimize the quadratic functional G(v, g; f) over U x H5(Q): find
(u,p) € U x H}(S2) such that

(2.3) G(u,p; f) = G(v,q f).

inf
(v.q)EUxHL ()

3. Discrete FOSLS

In [5], we proposed and analyzed the discrete first-order system least
squares method for the second-order partial differential equations. We
recall the formulation.

Let 75 be a partition of the domain €2 into finite elements; i.e.,

Q = UKeThK

with h = max{diam(K) : K € T,}. Assume that the triangulation 7} is
quasi-uniform; i.e., it is regular and satisfies the inverse assumption. Let
sz—l be a finite-dimensional space consisting of continuous piecewise
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polynomials of degree m — 1 with respect to the triangulation 7. Denote
standard finite element spaces by

Sh=HyQ)NPE |, and Sk =HL(Q)NP:_,
and define the approximation space for the vector variable as

Ut = (A7VSh) @ (A~2V+8h)
using the following Helmholtz decomposition, for any u € U,
(3.1) u=A2Vs+ A 3V,
where s € H5(f2) and ¢t € Hx ().
Define the discrete divergence operator and curl operator as follow.
Vit LX) — Sh, forve L2(Q)? by ¢ =V,-veSh

satisfying
(¢> Q) = _(V7 VQ)) v qge 8%

Vix: L) - Sk, forve L}*(Q)? byyp=VixveSy
satisfying
(¥, ¢) = (v,V*q), VqeSk.
Denote by Qj, the L?-projection operator onto 8}3.
Now, we define the discrete FOSLS functional: for (v,q) € U" x SB

Gh(v, ;1) = |f + Vn - (43v) = Qu(b - (A73V)) — cql?

(3.2) o L
+ v — A2Vg[]* + [|Va x (A72V)|%.

Define a norm over U" x SP, as

1
2

vl = (nqu% V24 IV - (AR + [V ¢ (A-%vnl?)

THEOREM 3.1. The homogeneous functional Gp(-;0) is uniformly el-
liptic and continuous in U" x S}k; i.e., for any (v,q) € U* x S]}_%, there
exists a positive constant C such that

(3.3) v, @l < Grlv,g;0) < CllI(v, I

1
5|||

Then we have the following error estimate.
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THEOREM 3.2. Assume that the solution (u, p) of the problem (2.2) is
in H™1(Q)2 x H™(Q) with m > 2 and let (up, pp) € U™ x Sh minimize
the functional (3.2). Then the following error estimate holds:

(3-4) [ = ws]l + llp = prlls < C R ([Ipllm + [ullm—1)-

Instead of working with v, € U”, we explicitly make use of its repre-
sentation:

(3.5) v=AiVs+ A"Vt where s € SP, t € Sk
We introduce two discrete diffusion operators.

Apa: S — Sh, for given s € SP, define Ap s € S}, to be the
solution of

(3.6) (Anas, ) = —(AVs, Vg), Y g€ Sh.
A/h; : Sk — Sh, for given t € SB, define Kh’\At € St to be the
solution of
(3.7) (Bnat, q) = (A7'VH, Vq), Vqe Sh.
It is easy to see that
Apa=Vh AV and A, =V, x ATV
‘We can easily show that
(3.8) 2P = (11, & P = Dol + sl + 11,
where )
NlsllI* = llsl? + 1 A2 Vs|? + | An,as]®
and ) o
11117 = [1£1% + | A2 V8% + || A, 4t

Then the discrete least-squares functional can be restate in terms of
functions (s,t,q) as

Gh(S,t,q; f)
(3.9) = ||f + Apas — Qu(b - (Vs + A'V1)) — cqlf?
+ | A3Vs + A"2VEt — A2Vg|? + || Apat]?

and the minimization problem is to find (¢n,¥n,pr) € SB % Sh x Sh
such that

(310) Gh(¢h,¢h,ph;f) = inf Gh($7t7q; f)

(s,t,9)ESH xSh xSk
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with up = A%V(i)h + A_%Vleh. The corresponding variational problem
is to find (¢n, ¥, pr) € SB x Sk x Sh such that ‘

(311) bh(¢h>whaph; S,t,(]) = fh(sataQ)a v (3,t7Q) € ‘Sg X ’Sliif X Sg’
where the bilinear and linear forms are given by

br(dh, Yn, Ph; 851, q)
= (Anadn — Qu(b- (Vén + A7'VEyr)) — cp,
Apas — Qh(b (Vs + A_let)) - cq)
1 (A3Vgy + A3V 4, — ATVps, A3Vs+ ATEVEE — A2Vg)
+ (Bnatn, B at)
and

fal(s,t,q) = (f, —Apas+Qn(b- (Vs+ AT'VE)) +cq).

THEOREM 3.3. For any (s,t,q) € S xSk xSk, there exists a positive
constant C such that

(3.12) (5, )II* < Gn(s,1,4;0) < C ll(s,t, )|

1
Al

Theorem 3.3 indicates that the quadratic form bn(s,t,q;s,t,q) can
be preconditioned well by the diagonal quadratic form |||(s,t,q)|||* be-
cause they are spectrally equivalent uniformly in the mesh size. We
further replace these diagonal blocks of |||(s,t,q)|||* by some multigrid
preconditioners (see [5] for details).

4. Implementation

From now on, we present three matrices corresponding to each term
of the bilinear form by (-; -) and the matrix associating with the linear
form fi,(-). First, let us denote .A; by the matrix corresponding to the
first term in the bilinear form by(-; -). Let {&} and {7} be the nodal
base for S% and 8" respectively. Then A; can be easily assembled as
the usual cases. Let

By = ((AV¢j, V&) and By = ((A7'V'n;, Vim)).
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Using the fact from the the orthogonality that
(A7Vs, A"3Viy) = (A73Vh, A3V — A7Vg)
= (A7Vp, A~2V1)
= 0’

By 0 —B;
-Al = 0 Bz 0 .
—-B; 0 Bl

For a function p = > p; & € Sg, denote by the coefficient vector
p= (p,) consisting of the nodal values and the data vector p = ((p, &)).
Then p = M p where M = ((§j, 51)) denotes the mass matrix. It is easy
check that (p,q) = ¢T Mp=gM~1p.

Let S1, S2 and M, be the matrices defined by S; = ((Qh(b-ij), §,~)),
$2 = ((@n(b- A71V4yy), &)) and M, = (¢ &, &), respectively. By
(3.6), By is also given by By = —((Ap 4 &;,&)). Then, the data vector
of Apas —Qn(b- (Vs + A71V1t)) — cp is given by

(Ah,AS —Qhn (b . (VS + Amlet)) —cp, fl)
=— ( (B1 + S1)3 + Saf + ]\40;13)z

Also, the data vector of Ap 4¢ — Qh(b (Vo + A—lvlw)) —cq is
similarly given by

(Ana¢ — Qu(b- (Vo + A7'VY)) — cq, &)
= — ((B1+81)6 + St + Mg ).

Hence, the L? inner product of the second term in the bilinear form
bn(-; -) can be represented by

(Apas — Qn(b- (Vs + A7IVEE)) — ep,
Apa¢ — Qu(b- (Vo + AV ) — cq)
= ((B1+51)¢ + Sotb + MG)" M~ ((B1 + 51)3 + Saf + Mp).

The existence of the inverse of the mass matrix M is not a pleasant
thing to compute. However, it is well known that M ™! is spectrally
equivalent to A2 1, i.e.,

we have

1
Eh‘ZxTx <yTM Y <Ch2yTx, VyeR™
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Therefore, the last equation can be further switched by the discrete
L? inner product (-;-);, such that

(Apas — Qr(b- (Vs + ATIV1t)) — cp,
Apad— Qu(b- (Vo + ATIVEY)) - cq),
= h72 ((B1 + S1)¢ + Sotb + Mg)" ((B1 + 51)5 + Saf + Mep).
The matrix corresponding to the right hand side of the last equation is
By + ST

.A2=h_2 Sg (Bl+S1 S MC).
M,

The computation of the third term (mt, A/h;w) in the bilinear
form by (-; -) similarly follows the case of the second term. Using the fact

from (3.7) that B; is also given by By = —((Kh,\A n;,7;)) and replacing
the L? inner product (th,\At, Zh,\mﬂ) by the discrete L? inner product
(Kh,\At, K’%\Aw)h’ we have (ZTh,\At, Zh,\fﬂb)h = h72 '@T B2t and the
matrix corresponding to the third term of by(-; -) is given by

A3z = h™2 BZ.

Consequently, the matrix form A corresponding to the bilinear form
br(-; ) is given by

A=A; + A + Aj.

Finally, we compute the linear form f5,(-). Let f, be the L? projection
of f into S}, ie., (f,€) = (fp,€) for any £ € S%. Then, the data vector
of fp is given by (fp,&) = (M fp)z" Using the fact that f, is the L2
projection of f into Sﬁ, we have

(f; Anad = Qu(b- (Vo + A7'V1) — cq)
= ((Bi+51)9+ Sotp + M) " fo.
The matrix form corresponding to the linear form f(-) is

By + S{ A
F = ST fp-
M,
Now, we are led to the matrix problem associating with (3.10):
(4.13) AX =F,
where X = (5,%,p)7.
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5. Numerical experiments

In this section, we present the numerical experiments for the following
ellpitic partial differential equation:

(5.1) p = 0, ond,

{ -V - (AVp)+b-Vp+cp = f, inQ,

where Q is the unit square and A = al, where I is the 2 x 2 identity
matrix and @ is the function defined for a given constant o on the unit
square by

1, =<3,
a(w,y)—{ o, x>;

The finite element approximation in this paper is performed as fol-
lows. The domain € is first partitioned into 27 x 27 squares of size hjxh;,
with h; = 277. Then, each small square is divided into pairs of triangles
by connecting the bottom right and upper left corners. We use the con-
tinuous piecewise linear finte element space for the approximation of all
unknowns s, ¢, and p to solve the problem (3.11). The iteration method
we used is the preconditioning conjugate gradient method with diagonal
preconditioner

B = diag[h?P?, h*PZ, P1],

where P; and P, are the standard multigrid V (71, 72)-cycle precondition-
ers of the operators I — Ap 4 and I — Ap 4, respectively. The coarsest
grid size for multigrid V-cycle is h; = 27

We first study the performances of the preconditioner B. To show the
effectness of the preconditioner B, we report the condition numbers of
the preconditioned linear system along with various coefficients b and
c. For the convenience of the readers, we include a discussion about the
relation between the iteration numbers and condition numbers which
can be found in [2, 9].

Let X be the solution of AX = F, X,, be the m-th iterates and
R,, = F — AX,, be the residual. Then there is a constant Cy, Cj,
independent of h, such that

Co(AX - Xp), X = X
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and so
Co (BRm, Rin) < (AX — Xm), X — Xi)
C1 (BRo, Ro) ~ (A(X —Xo), X — Xo)
- CO (BR[), Ro) .

Therefore
(B B) __
(B R07 RO)

can be used to stop the iteration. In the preconditioning conjugate gra-
dient method, (B Ry, R,n) is computed as part of the iteration, so the
error estimator is free of cost. To reveal the real error reduction rate and
condition number of the preconditioned system, we choose ¢ = 1078.
The condition number of BA can be estimated by

1+6)? . (&
/s(B.A)S(lT) , with 6—(1) ,

where m is the iteration number.

We present iteration numbers and condition numbers of BA for the
problem (5.1) with the three values o = 1,10, 100. Tables 1 and 2 report
the iteration numbers and condition numbers of B.A under the precon-
ditioning conjugate gradient iterations when we use one sweep multigrid
V(2,2)-cycle in Table 1 and one sweep multigrid V(3,3)-cycle in Table 2
for the preconditioners P; and P». As expected, the condition numbers
depend on the size of o, convection b and reaction ¢, but the degrada-
tion is fairly graceful. Comparing Table 1 with Table 2, we can observe
that the use of multigrid V(2,2)-cycle preconditioners is more effective
than the use of multigrid V(3,3)-cycle preconditioners except the case of
o =100 and b = (6, 9), in which multigrid V(3,3)-cycle preconditioners
are good.

We also present the discretization errors and their convergence rates.
Let p be the exact solution to the problem (5.1). Then u = A%Vp is the
exact solution to the first-order problem (2.2). Let pp, s, and tp be the
approximation solutions to the problem (3.11). Then, the approximation
solution uy, is defined by

up = A2Vsp + A"V,
Denote by

€uh = ”u - uh“, where u = A%Vp,
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and
eph=lp—pull and epp=p—pals-
Here, the norms of all errors were calculated approximately using the
seven points quadrature rule in the triangles of triangulation 7. The
convergence rates for discretization errors are measured by
1

€uh €p,h €p,h
logy — logy —2=~, and log, —=-.

e, h €, h el

Usg Py Do

We tested the problem (5.1) with several kinds of coefficients o, b
and c;

b’ = (0,0), (2,3),(4,6),(6,9) and c¢=0,-1,-10.

First, we chose A to be the identity matrix, i.e., ¢ = 1, and the
smooth exact solution to be

p = z(z — 1) sin(my).

The exact values of vector solution u and right hand side f are defined
consistently. The theoretically predicted discretization errors of p in H'
and of u in L? are O(h), but the resulting errors in Table 3 appear to
be O(h?). It is probably due to smooth exact solution and coefficients.

Finally, we present results for our method applied to a discontinuous
coefficient problem. We again treat the problem (5.1) with the three
values o = 1,10, 100, and constructed the exact solution p so that u is
not a product H'! function:

_ ((20 — 4)z® + (4 — o)z) sin(ny), = < 4,
p@,) {( — 6z% 4 Tz — 1) sin(ry), > 1

Tables 4 shows the results for the case ¢ = 100. Also, the result-
ing errors of p in H! and u in L? are apparently O(h?). We therefore
appear to have obtained optimal convergence in the L2 norm and super-
convergence in the discrete H' norm. Our experimental results for the
case ¢ = 1 and 10 also had the same fashions as the case o = 100.
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o=1 o =10 o = 100
c | P |[h=4% 35 s o | T 3 81 s T35 1 18
0 (0,0) 4 4 4 4 14 12 9 9 22 21 20 16
1.6 1.6 1.6 1.6 109 8.2 49 49 25,9 237 216 14.0
(2,3) T 7 77 20 21 20 18 50 66 64 56
3.2 3.2 3.2 32 21.6 23.7 21.6 17.6 131.2 228.1 214.6 164.4
(4,6) 16 16 16 16 35 37 33 30 95 177 170 143
14.0 14.0 14.0 14.0 64.6 72.2 B57.5 47.7 471.9 1636.6 1509.8 1068.5
(6,9) 31 31 36 34 46 57 54 47 215 300 300 300
50.9 50.9 68.3 61.0 | 111.2 170.3 152.9 116.0 | 2414.5 4700.3 4700.3 4700.3
-1 | (0,0) 4 4 4 4 14 13 10 9 23 22 21 18
16 16 1.6 1.6 109 9.5 5.9 49 28.3 259 23.7 17.6
-10 | (0,0) 5 6 6 7 52 19 20 17 73 86 66 44
2.0 26 2.6 3.2 | 141.9 19.5 21.6 15.8 278.9 386.9 228.1 101.8

TABLE 1. Iteration numbers and condition numbers by V(2,2).

c=1 o =10 o =100

c | b |h=1 3 dims| 16 3 % s | i 3 i %
0 | (0,0) 4 4 33 0 9 9 8 16 14 14 13
16 16 1.2 1.2 | 59 49 49 40 | 140 109 109 95

(2,3) 6 6 6 7 16 19 17 16 32 41 39 34
26 26 2.6 32 |14.019.515814.0 | 54.1 88.4 80.1 61.0

(4,6) 16 15 15 15 24 30 28 25 52 63 65 58
14.0 12.4 12.4 12.4 | 30.7 47.7 41.6 33.3 | 141.9 207.9 221.3 176.3

(6,9) 23 29 32 30 39 43 41 37 94 121 118 99
28.3 44.6 54.1 47.7 | 80.1 97.2 88.4 72.2 | 462.1 765.2 727.8 512.5

-1 1 (0,0) 4 3 43 10 11 9 8 19 16 14 14
16 1.2 1.6 1.2 | 59 7.0 49 40 | 195 14.0 109 10.9

-10 | (0,0) 5 6 6 6 13 19 19 14 36 43 35 27
2.0 26 26 26 | 95195195109 | 68.3 97.2 64.6 38.7

TABLE 2.

Iteration numbers and condition numbers by V(3,3).
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[e[b ] ]l en [ e [ n ]
0 | (0,0)| 5 | 6607e-2 1.369¢-2 6.747¢-2
5 || 1.818e-2| 1.86 || 3.959¢-3| 1.79 || 1.861e-2| 1.86
76 || 4657e-3| 1.96| 1.027e-3| 1.95|| 4.769e-3 | 1.96
35 || 1.171e-3| 1.99 || 2.593e-4 | 1.99 || 1.200e-3 | 1.99
a1 | 2:933e-4{ 2.00| 6.497¢-5| 2.00 || 3.004e-4 | 2.00
T35 || 7-335e-5 | 2.00| 1.625¢-5 2.00|| 7.513e-5 | 2.00
0 |(23)| 3 |[ 64332 1.303e-2 6.563¢-2
5 | 1.757e-2| 1.87| 3.719¢-3| 1.81| 1.796e-2 | 1.87
7 | 4491e-3| 1.97| 9.618e-4| 1.95 || 4.593e-3| 1.97
3 || 1.129e-3| 1.9 || 2.425e-4 | 1.99 || 1.155¢-3| 1.99
31 | 2:827e-4| 2.00| 6.076e-5| 2.00 || 2.891e-4 | 2.00
5 || 7-069e-5| 2.00 || 1.520e-5 | 2.00 || 7.230e-5 | 2.00
0 |(46) 3 | 6.030e2 1.157e-2 6.140e-2
5 || 1-625e-2| 1.89 || 3.225e-3 | 1.84 | 1.657e-2 | 1.89
76 | 4143e-3| 1.97| 8.305e-4 | 1.96 || 4.228e-3| 1.97
3 || 1.018e-3| 2.02|f 2.027e-4 | 2.03 || 1.031e-3 | 2.04
& | 2:578e-4| 1.98 5.160e-5| 1.97 || 2.620e-4| 1.98
5 || 6.396e-5| 2.01 || 1.290e-5| 2.00 || 6.539¢-5 | 2.00
0 ](69] 1 | 55862 1.004e-2 5.677e-2
s || 1475e-2| 1.92 | 2.708e-3| 1.89 || 1.493e-2| 1.93
75 || 3.627e-3| 2.02|| 6.55de-4| 2.05|| 3.621e-3| 2.04
35 || 9-685e-4| 1.91 || 1.880e-4 | 1.80 || 1.057e-3 | 1.78
5 | 2.191e-4| 2.14| 3.341e-5| 2.49 || 1.924e-4| 2.46
5 | 6-294e-5| 1.80| 9.930e-6 | 1.75 || 5.791e-5| 1.73
-1 [ (00) | & | 6.345e-2 1.209e-2 5.957e-2
§ || 1-743e-2| 1.86 || 3.468¢-3| 1.80 || 1.629e-2| 1.87
76 || 4-461e-3| 1.97 || 8.978e-4| 1.95 || 4.164e-3| 1.97
35 || 1.122e-3| 1.99 || 2.264e-4| 1.99 || 1.047¢-3| 1.99
& || 2-809e-4| 2.00| 5.674e-5| 2.00 || 2.621e-4| 2.00
15 | 7-024e-5| 2.00|| 1.419e-5| 2.00 || 6.555¢-5 | 2.00
-10 | (0,0) | 1 | 5.113e-1 8.248¢-2 7.317e-1
§ || 1-34le-1| 1.93 || 2.142e-2| 1.94 || 1.683e-1| 2.12
76 || 3-403e-2| 1.98 || 3.609e-3 | 2.57 || 2.819e-2| 2.58
35 || 8-575e-3| 1.99|| 9.218e-4| 1.97 || 7.143e-3 | 1.98
& || 2-146e-3| 2.00|| 2.066e-4 | 2.16 || 1.609e-3 | 2.15
55| 5:367e-4| 2.00|| 5.106e-5 | 2.02| 3.981e-4 | 2.02

TABLE 3. Discretization errors and convergence rates for

the smooth solution.



Approximation of the discrete first-order system least squares

(el b |

h JL €u,h

€p,h

T

1

_

€p.h
0 1 (0,0 | % | 4.844e+0 5.067e-1 4.334e+0
5 || 1.455e+0 | 1.74 || 1.719e-1 | 1.56 || 1.317e+0 | 1.72
75 || 3.802e-1 | 1.94 || 4.624e-2 | 1.89 || 3.441e-1 | 1.94
35 || 9611e-2 | 1.98 || 1.180e-2 | 1.97 || 8.713e-2 | 1.98
& || 2410e-2 | 2.00 || 2.962e-3 | 1.99 || 2.184e-2 | 2.00
155 || 6-028e-3 | 2.00 || 7.405e-4 | 2.00 | 5.458e-3 | 2.00
0 | (23)] % | 9298e+0 5.641e-1 4.790e+0
5 || 1.433e+0 | 2.70 || 1.692e-1 | 1.74 || 1.301e+0 | 1.88
76 | 3.745e-1 | 1.94 | 4.566e-2 | 1.89 || 3.413e-1 | 1.93
% || 94722 | 1.98 || 1.162e-2 | 1.97 || 8.627e-2 | 1.98
51 || 2:261e-2 | 2.07 || 2.770e-3 | 2.07 || 2.060e-2 | 2.07
155 || 5-940e-3 | 1.93 || 7.30de-4 | 1.92 || 5.410e-3 | 1.93
0 | (46)| % | 1.042e+1 5.684e-1 4.884e+0
3 || 228840 | 2.19 || 1.779e-1 | 1.68 || 1.411e+0 | 1.79
76 || 3.642e-1 | 2.65 || 4.326e-2 | 2.04 || 3.296e-1 | 2.10
35 || 9178e-2 | 1.99 || 1.100e-2 | 1.97 || 8.332e-2 | 1.98
5 || 2.251e-2 | 2.03 || 2.677e-3 | 2.04 || 2.032e-2 | 2.04
135 || 5:762e-3 | 1.97 || 6.931e-4 | 1.95 | 5.239¢-3 | 1.96
0 [(69] % 1.382e+1 8.236e-1 7.046e+0
5 || 3-550e+0 | 1.96 || 1.849e-1 | 2.15 || 1.622e+0 | 2.12
76 || 3496e-1 | 3.34 || 4.008e-2 | 2.21 || 3.142e-1 | 2.37
3 || 9930e-2 | 1.82 || 9.212e-3 | 2.12 || 7.216e-2 | 2.12
o || 2:187e-2 | 2.18 || 2.508¢-3 | 1.88 || 1.953e-2 | 1.89
5 | 6.222e-3 | 1.81 || 7.191e-4 | 1.80 || 5.531e-3 | 1.82
-1 [ (0,0) | L | 4.693e+0 4.592e-1 3.940e+0
3 || 1.405e+0 | 1.74 || 1.538e-1 | 1.58 || 1.182e+0 | 1.74
75 || 3.668e-1 | 1.94 || 4.146e-2 | 1.89 || 3.093¢-1 | 1.93
35 || 92722 | 1.98 || 1.055e-2 | 1.97 || 7.814e-2 | 1.98
&1 || 2:324e-2 | 2.00 || 2.650e-3 | 1.99 || 1.959%-2 | 2.00
155 || 5-815e-3 | 2.00 || 6.633e-4 | 2.00 || 4.900e-3 | 2.00
-10 | (0,0) | % || 1.908e+1 8.149e+0 6.714e+1
5 || 432240 | 2.14 || 2.833e+0 | 1.52 || 2.099e+1 | 1.68
7 || 6.616e-1 | 2.71 || 4.850e-1 | 2.55 || 3.480e+0 | 2.59
35 || 1.500e-1 | 2.14 || 1.129e-1 | 2.10 || 8.036e-1 | 2.11
& || 366le2 | 2.03 | 2.775e-2 | 2.02 || 1.971e-1 | 2.03
755 || 9:088e-3 | 2.01 || 6.901e-3 | 2.01 || 4.900e-2 | 2.01

577

TABLE 4. Discretization errors and convergence rates for o = 100.
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