• Title/Summary/Keyword: Discharger

Search Result 86, Processing Time 0.04 seconds

A Study on the Multi-Channel Large Capacity Charge/Discharge Formation Module (다채널 대용량 충방전기 모듈 개발에 대한 연구)

  • Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.55-60
    • /
    • 2016
  • This study was developed through the secondary battery module charging/discharger possible utilization in the production process equipment circuit. The developed module is ensuring construction of efficient and productive charging and discharger through this research a limit on the yield and the price of existing single -channel charge and discharger circuit as a 5V 70A grade secondary battery Formation charge and discharger for up to 1 board 4 channels. In order to improve the sensing accuracy, through a robust differential amplifier circuit described using 16bit Analog-Digital Converter and noise was secured 16bit resolution sensing. The configuration also made demands for property Rise / Fall Time. Data Acquisition, discharge efficiency and also to fit the sink circuit temperature level for mass production.

A Study on the Optimal Design of 5 kW Plasma Discharger (5kW급 플라즈마 방전장치 설계 최적화의 관한 연구)

  • Noh, Hyun-Kyu;Shin, Chul-Jun;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.150-159
    • /
    • 2016
  • This paper presents a study on the design optimization of a 5 kW plasma discharger for driving plasma reactor. The proposed study is composed of a high-frequency inverter based on the full-bridge circuit using soft switching techniques for high-frequency switching. The switching frequency in the operating region is the area of 130-200 kHz. By applying the LC resonance technique and a variable switching frequency, control technique is designed to be stable under changes in the load characteristics of the plasma reactor. This paper presents a quantitative analysis technique for design optimization. Experiments are performed according to load characteristic variations depending on the vacuum of the plasma reactor. This paper has verified the topology and design method for the 5 kW plasma discharger design.

PFC Converter design for Uninterruptible Power Supply, including Battery Discharger (배터리 방전기 기능을 포함한 무정전전원장치의 PFC 설계)

  • Byeon, Yong Seop;Lim, Seung Beom;Kwon, Sun Man;Lee, Jun Young;Hong, Soon Chan
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.5-6
    • /
    • 2013
  • This paper proposes the PFC converter design for Uninterruptible Power Supply(UPS), including Battery discharger. Battery discharger supplies power to the inverter, when accidents occur, such as power failure, blackout, overload. To verify the validity of proposed the PFC converter design including battery discharger, simulations are carried out.

  • PDF

A Study on 3-level Interleaved Charger-Discharger for Uninterruptible Power Supplies (무정전전원장치용 3-레벨 인터리브드 충방전기에 대한 연구)

  • Koo, Tae-Geun;Lee, In-Hwan;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.535-542
    • /
    • 2017
  • This paper proposes a simple 3-level interleaved charger-discharger for the uninterruptible power supply (UPS) with various combinations of battery cells. The proposed converter not only improves charging and discharging efficiency, but also reduces the physical volume and the cost. Furthermore, the converter also offers the capability of the neutral point voltage, so that more stable operation can be obtained. In addition, the proposed converter significantly reduces the ripple current of the battery inductor, thereby providing an expected life extension of the battery. Experimental results for a 300kVA UPS prototype verify the validity of the proposed converter. The proposed charger-discharger is suitable for UPSs and energy storage systems (ESSs) with wide input battery voltage ranges.

Development of active discharge tester for high capacity lithium-ion battery (대용량 리튬 이온 배터리용 Active 방전시험기의 개발)

  • Park, Joon-Hyung;Yunana, Gani Dogara;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Lithium-ion batteries have a small volume, light weight and high energy density, maximizing the utilization of mobile devices. It is widely used for various purposes such as electric bicycles and scooters (e-Mobility), mass energy storage (ESS), and electric and hybrid vehicles. To date, lithium-ion batteries have grown to focus on increasing energy density and reducing production costs in line with the required capacity. However, the research and development level of lithium-ion batteries seems to have reached the limit in terms of energy density. In addition, the charging time is an important factor for using lithium-ion batteries. Therefore, it was urgent to develop a high-speed charger to shorten the charging time. In this thesis, a discharger was fabricated to evaluate the capacity and characteristics of Li-ion battery pack which can be used for e-mobility. To achieve this, a smart discharger is designed with a combination of active load, current sensor, and temperature sensor. To carry out this thesis, an active load switching using sensor control circuit, signal processing circuit, and FET was designed and manufactured as hardware with the characteristics of active discharger. And as software for controlling the hardware of the active discharger, a Raspberry Pi control device and a touch screen program were designed. The developed discharger is designed to change the 600W capacity battery in the form of active load.

LLC Resonant Converter design for Uninterruptible Power Supply battery discharger (LLC 공진형 컨버터를 이용한 무정전전원장치 battery discharger 설계)

  • Yoo, Kwang Min;Kim, Seung Joo;Kim, Kyoung Dong;Park, Seung Hee;Byeon, Yong Seop;Lim, Seung Beom;Lee, Yun Ha;Lee, Jun Young
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.37-38
    • /
    • 2012
  • 무정전전원장치(UPS: Uninterruptible Power Supply)는 정전 등의 사고가 발생할 때 양질의 전원을 부하에 공급하는 장치이다. 무정전전원장치의 구성은 크게 역률개선회로, 인버터, battery charger, battery discharger부로 크게 4개로 나눌 수 있다. 그 중 정전 등의 사고발생 시 battery에 충전되었던 에너지를 인버터 부로 공급하여야하며 이를 담당하는 부분이 battery discharger부이다. battery의 전압은 비교적 낮은 전압이며 인버터의 입력에 필요한 전압은 비교적 큰 전압이기 때문에 승압형 컨버터가 필요하게 된다. 본 논문에서는 UPS battery discharger용 3KW급 LLC 공진형 컨버터를 설계하고 실험 검증하였다.

  • PDF

A Study on Cooling Effect and Power Control of a Mini Ozonizer (소형 오존발생장치의 전력제어와 냉각효과에 관한 연구)

  • Woo, Sung-Hoon;Park, Seung-Cho;Yoon, Sung-Yoon;Park, Jee-Ho;Woo, Jung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.97-103
    • /
    • 2006
  • In this paper, a control method of a mini ozone generator is proposed, and also a cooling technique is described which is cooling down the flowing air gap into a silent discharger to $2^{\circ}C$ to generate ozone of high density and diffusing power. As the digital control system for this method, a double feedback loop is designed which detects the voltage and current of equivalent capacitor of the discharger and compensates for the poor power waveform caused by the noise at high discharging frequency. During the plant modeling of this system, computing time factor is considered as a unique parameter of the power system to improve the transient responses with regard to fluctuating load and to replenish the computing time delay of the controller. Through the experiment, sinusoidal input current for discharger can be acquired and all the effectiveness of this accurate control system over unstable ozone discharger are proved.

Design of Soft Switched Synchronous Boost Converter

  • Dong, Zhiyong;Jeong, DongGyu;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.9-16
    • /
    • 2020
  • In this paper, we designed a soft switched synchronous boost converter, which can perform discharging the battery, is simulated, and experimented designed. The converter operates synchronous operation to increase efficiency of the converter. The converter has very small switching losses because of its soft switching characteristics. In this paper, battery discharger with a switching frequency of 100 kHz have been designed. The designed converter also simulated and experimented to prove the converter's characteristics during synchronous operation. The simulated and experimental results have confirmed that the battery discharger had soft switching characteristics. In addition, the experimental results confirm that the converter has high efficiency characteristics. The efficiency of the circuit exceeds 97%, the efficiency of soft switched synchronous boost converter is at least 6% higher than that of conventional PWM boost converter.