공기중 입자측정의 높은 효율을 위한 초소형 멀티팁 코로나 방전기

Multi-tip micro corona discharger for high efficiency

airborne particle measurement

^{*}변석영¹,김홍래¹,[#]김용준¹

*S.Y. Byun¹, H.L. Kim², [#]Y. J. Kim(yjk@yonsei.ac.kr)¹ ¹연세대학교 기계공학부

Key words : Micro corona discharger, Multi-tip, Particle measurement

1. 서론

공기중의 인체에 유해한 극미세입자들을 측정 및 모니터링 하기위한 목적으로, 크고 고가의 상용 장비들을 대신해서 작고 저가의 측정장치를 개발 하기위해 MEMS기반의 초소형 코로나 방전기가 연구된 바 있다. 초소형 코로나 방전기는 코로나 방전원리의 기초에서 구현되었다. 뾰족한 팁과 전 극판 사이에 큰 전압이 가해지면 생성된 전기장의 영향으로 가속되는 자유전자가 공기 분자들과 충 돌하여 이온화를 시킨다. 그 과정이 연속되면서 전자사태가 발생해 팁주변에 진한 이온, 자유전자 구름이 형성되는 것을 설명하는 이론을 코로나 방전이라 한다.[1-2]

하지만 기존에 연구된 초소형 코로나 방전기의 경우 그 하전 효율이 매우 낮아서 전기적 하전장치 로써 활용하기에 부족한 부분이 있었다.

본 논문에서는 그러한 초소형 코로나 방전기의 하전효율을 높이기 위한 하나의 방법으로 멀티팁 코로나 방전기를 제안한다. 제안하는 멀티팁 코로 나 방전기는 실리콘 기판의 식각을 통하여 제작되 었고, 전기적으로 입자를 하전하는데 기존 연구된 장치에 비해 보다 나은 성능을 보여주었다. 방전기 에 고전압을 가해 하전현상을 발생시키고 입자를 투입하여 출구쪽에 나오는 입자의 하전량을 측정 함으로써 제작된 코로나 하전기의 성능을 평가하 였다.

2. 기존 초소형 코로나 방전기 문제점

그림 1은 입자의 하전과정을 개략적으로 보여준 다. 입자들이 코로나 방전 영역을 통과할 때 하전되 고, 하전된 입자들의 전류를 측정해 그림2의 수식 을 활용해서 입자의 수농도를 환산한다.[1]

Fig. 1 Process of particle charging in corona discharger

Fig. 2 Equation of particle number concentration

그림 3는 기존에 제작된 코로나 방전기의 입자하 전 결과이다. 하전된 입자의 양은 입자의 직경이 작을수록 낮았졌으며, 특히 실험한 나노 입경대에 서는 측정되는 전류값이 수 fA에 불과해, 결과 그래 프에서 입경별 차이를 전류대신 전류값과 비례관 계인 입자하전량을 뜻하는 pn값으로 대체해야만 그 차이를 확실히 알아볼 수가 있었다. 이는 차후 입자측정 통합센서 제작시에 입자 측정의 오류와 신호처리에 있어 어려움을 발생 시킬 수 있기 때문 에 입자의 하전 효율 높일 수 있도록 소자를 향상시 킬 필요성이 있다.

Fig. 3 Result of single tip micro corona discharger

3. 멀티팁 코로나 방전기 제작

기존에 연구된 코로나 방전기는 단일 팁 구조의 코로나 방전기로 그 하전영역이 팁이 있는 한부분 에 국한되어있었다. 팁은 그 크기가 매우 작은데다 가 전체전극 안에서 차지하는 영역 또한 적으니 방전이 일어나도 입자 하전에 많은 영향을 끼치지 못했다. 그래서 코로나 방전에 필요한 팁형 전극을 다수 제작하여 코로나 방전이 발생할 수 있는 영역 을 넓힘으로써 그 하전효율이 상승할 수 있도록 시도하였다.

Fig. 4 Simplified fabrication process

Fig. 5 Optical photographs of fabricated multi-tip

그림 4와 5는 간단한 공정도와 제작된 멀티팁의 모양이다. 실리콘 기판위에 증착된 산화 실리콘 막을 패턴하여 그것을 마스크로 활용, 그 아래의 실리콘 층을 TMAH용액을 통해 이방성 식각을 실시하면 뾰족한 팁구조가 만들어진다. 이렇게 생 성된 실리콘 기판위에 금속을 증착 및 패턴을 하여 차후 패키징을 통해 코로나 방전기를 완성시켰다.

Table 1 Geometr	ical parameters	of the	multi-tip
-----------------	-----------------	--------	-----------

Parameter	Dimension	
Array	5 × 3	
Tip size	100μm × 100μm	
Height of tip	70µm	

4.실험 및 결과

제작된 멀티팁 초소형 코로나 방전기의 성능을 확인하기 위해, 기존의 단일팁 코로나 방전기와 비교실험을 수행하였다. 두 방전기 모두 0.31pm의 유량으로 입자를 투입시키고 3.1kV의 입력전압을 가하여 초기조건을 일치시킨 뒤, 나노입경대의 입 자들로 입자 입경별 하전량을 측정하는 비교실험 을 실시하였다.

단일팁과 멀티팁 구조 모두 투입된 입자들의 입경이 낮아질수록 그 pn값이 낮아지는 경향은 동일하였다. 하지만 각각 동일 입경대의 입자의 하전에서 멀티팁의 구조가 기존의 단일팁 구조의 코로나 방전기보다 pn값이 2배 혹은 그 이상으로 측정됨으로써 그 하전효율이 증가했음을 알 수 있었다. (그림 6)

5. 결론

본 논문에서는 단일팁 구조의 초소형 코로나 방전기의 하전 효율을 높이기 위하여 다중 팁 구조 의 코로나방전기를 제안하였고, MEMS기술을 통 해 5 × 3 배열의 멀티팁 코로나 방전기를 제작해 그 하전 성능을 평가하였다. 하전성능 확인을 위해 단일팁 코로나 방전기와 비교실험을 수행한 결과 멀티팁의 구조에서 단일팁 구조보다 2배이상의 효율이 증가하는 것을 확인하였다.

후기

이 연구는 서울시 R&BD 프로그램(GR070039) 및 한국연구재단 특정기초연구(R01-2008-000-21078-0)의 지원을 통하여 수행되었습니다.

참고문헌

- Yong-Ho Kim et al, "Integrated particle detection chip for environmental monitoring", Lab on a Chip, Vol. 8, pp 1950-1956, 2008
- Jen-Shih Chang et al, "Corona Discharge Processes". IEEE Transactions on Plasma Sicience, Vol. 19, No 6, pp 1152-1166, 1991

Fig. 6 Result of mesuremnet of charged particles by single tip & multi-tip micro corona discharger