• Title/Summary/Keyword: Discharge performance

Search Result 1,685, Processing Time 0.035 seconds

Discharge Performance of Impinging Injector for Cavitating Flow

  • Cho, Won Kook;Ryu, Chul-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The discharge performance of an impinging-type injector for cavitating flow has been evaluated. The predicted discharge coefficient for cavitating flow agree s well with the measured data showing less than 2% discrepancy. For the case of non- cavitating flow analysis, the disagreement between CFD resu lts and the experimental data is 8%. The discharge coefficient for the cavitating flow decreases with decrea se in the Reynolds number. On the other hand, it increases slightly as the Reynolds number increases for the non-cavitating flow because of the reduced viscous effect. The incipience of cavitation is predicted to occur around the cavitation number of 1.3 for fixed Reynolds number flow. In this environment, the discharge performance is proportional to the cavitation number for cavitating flow while it is independent to the cavitation number for non-cavitating flow regime.

Insulation Performance Estimation of Main Relays by Partial Discharges (부분방전에 의한 주계전기의 절연성능 평가)

  • Kil, Gyung-Suk;Kim, Il-Kwon;Park, Dae-Won;Song, Jae-Yong;Lee, Gang-Won;Cho, Eun-Je
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.388-392
    • /
    • 2007
  • A new dielectric test on main relays of electric traction vehicles, the partial discharge(PD) test, is proposed. The PD test will not affect the insulation performance of specimen during the test and provide much more detailed information on insulation, the types of defects, and so on. Insulation performance of relays is estimated by discharge inception voltage(DIV), discharge extinction voltage (DEV), and apparent charge as a function of test voltage and time. Three main relays of different manufacturing date were estimated by applying AC voltage with three patterns in ranges of $0{\sim}1,200[V]$. From the results, we could estimate insulation state and which types of defects exist in them.

Effect of Solution-treated on Electrochemical Properties of AZ91 Magnesium Alloy Anode

  • Zhiquan, Huang;Yanjie, Pei;Renyao, Huang;Xiangyu, Gao;Jinchao, Zou;Lianyun, Jiang
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.486-496
    • /
    • 2022
  • The effect of solution-treated on the self-corrosion performance and discharge performance of AZ91 magnesium alloy as anode material was analyzed by microscopic characterization, immersion tests, electrochemical measurements, and discharge performance tests. The study shows that the β-phase in the AZ91 magnesium alloy gradually dissolved in the matrix with the increase of the solution temperature, and the electrochemical activity of the magnesium alloy anode was significantly improved. Through the comparison of three different solution-treated processes, it is found that the AZ91 magnesium alloy has the most vigorous activity and better discharge performance after solution-treated of 415℃+12 h. In addition, the proportion and distribution of β-phase AZ91 magnesium alloy have a direct impact on its discharge performance as an anode material.

An Evaluation of River Discharge Estimates in a Junction with Backwater effect using Interpolated Hydraulic Performance Graph (HPG로 산정한 합류부 배수영향 구간의 유량 평가)

  • Kim, Ji-Sung;Kim, Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.831-838
    • /
    • 2018
  • This paper presents a method to estimate the flow discharge in a backwater affected river junction. First, unsteady HEC-RAS model was simulated and calibrated using 2 recent real flood and then HPG (Hydraulic Performance Graph) was created by plotting the relationship between upstream and downstream stages and discharge in the reach and performing kriging interpolation. During a flood, the discharge through the reach can be estimated based on the stages at its ends and the developed HPG. These discharge data were in good agreement with the automatic discharge measurements such as ADVM. This study could provide an economical and practical method for estimating discharge in a junction with a high hysteresis of stage-discharge relationships.

Fuzzy Control of Discharge Pulse Duration for Electrical Discharge Machinery (방전가공기의 방전 펄스 시간의 퍼지제어)

  • Lee, Je-Hie;Park, Ho-Joon;Yang, Jik-Hyun;Huh, Uk-Youl;Lee, Sun-Woo;An, Sung-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1167-1169
    • /
    • 1996
  • As electrical discharge machinery(EDM) is industrial process which is manufactured by discharge energy, by producing discharge, EDM process finished material at the little micrometer air gap. Especially, EDM is used for the characteristic of heat-resisting material, it puts to use air-space industrial element, confusing shaping material such as jet engine, rocket elements. Working performance. is changed by environment of working, discharge current voltage and duration of discharge pulse. Evaluation of performance working is work speed, clearance smoothing of product surface, wasting of pole. In this paper, this machine is compensated by adaptive controller which corrects the weak points of classical machine which is observed and operated working condition by user in hands. The previous purpose is main object in this thesis. The adaptive controller automatically detect abnormal condition and working conditions. To improve performance, surface smoothing and working speed, the adaptive controller uses fuzzy control strategy. To evaluate performance, this controller is implemented by microprocessor i80c196 and is applied real experimental machine.

  • PDF

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents

  • Song, Hee-Youb;Jung, Moon-Hyung;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.430-436
    • /
    • 2020
  • Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.

Prediction of Lithium Diffusion Coefficient and Rate Performance by using the Discharge Curves of LiFePO4 Materials

  • Yu, Seung-Ho;Park, Chang-Kyoo;Jang, Ho;Shin, Chee-Burm;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.852-856
    • /
    • 2011
  • The lithium ion diffusion coefficients of bare, carbon-coated and Cr-doped $LiFePO_4$ were obtained by fitting the discharge curves of each half cell with Li metal anode. Diffusion losses at discharge curves were acquired with experiment data and fitted to equations. Theoretically fitted equations showed good agreement with experimental results. Moreover, theoretical equations are able to predict lithium diffusion coefficient and discharge curves at various discharge rates. The obtained diffusion coefficients were similar to the true diffusion coefficient of phase transformation electrodes. Lithium ion diffusion is one of main factors that determine voltage drop in a half cell with $LiFePO_4$ cathode and Li metal anode. The high diffusion coefficient of carbon-coated and Cr-doped $LiFePO_4$ resulted in better performance at the discharge process. The performance at high discharge rate was improved much as diffusion coefficient increased.

Performance Evaluation of SHF Sensor for Partial Discharge Signal Detection on DC Rectifier (DC 정류기 부분방전 신호검출을 위한 SHF 센서의 성능평가)

  • Jung, Ho-Sung;Park, Young;Na, Hee-Seung;Jang, Soon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1056-1060
    • /
    • 2012
  • Online monitoring system is becoming an essential element of railway traction system for utilized to condition based malignance management and various techniques currently employed in railway traction system. Among the various techniques, it is efficient to detect partial discharge signals by electromagnetic wave detection in order to detect insulation fault of rectifier. Although VHF (Very High Frequency), UHF (Ultra High Frequency) sensors were adopted to detect partial discharge of power facilities, due to characteristics of urban railway, excessive noise occurs from 500 MHz to 1.5 GHz on UHF bandwidth. In this paper a new measurement system able to monitoring the conditions of power facilities on DC substation in metro was studied and set up. The system uses UHF sensors to measure the partial discharge of the rectifier due to electric faulting and dielectric breakdown. Comparison and estimation for performance of SHF sensor which had devised to detect partial discharge signal of urban railway rectifier has conducted. In order to estimate performance of SHF sensor, we have compared the sensor with existing UHF sensor on sensitivity upon frequency bandwidth generated by pulse generator, and also we have verified performance of the SHF sensor by detection results of partial discharge signal from urban railway rectifier.

Analysis of the Dynamic Characteristics of the Underwater Discharge System using a Centrifugal Pump (원심펌프 방식 수중발사 시스템의 동특성 해석)

  • Jung, Chan-Hee;Park, In-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.594-600
    • /
    • 2012
  • In this study, the mathematical model of the underwater discharge system using a centrifugal pump was derived and the rotating speed profiles of the pump which satisfied the discharge performance requirements were obtained through the underwater discharge simulations. The simulation results showed that the dynamic characteristics of a projectile were greatly affected by the rotational speed of the pump, however, hardly by the discharge depth. It is anticipated that the simulation model can be used to derive the design parameters and analyze the performance concerning the underwater discharge system using a centrifugal pump.

A Novel Battery Charge/Discharge System with Zero Voltage Discharge Function (영전압 방전 기능을 갖는 새로운 배터리 충방전시스템)

  • Nguyen, Quang Manh;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.169-170
    • /
    • 2013
  • One important test for formation and grading of the lithium-ion battery is to confirm the performance of the battery while discharging battery down to zero volts. In this paper, a novel charge/discharge converter with zero-voltage discharge function is proposed. The proposed converter is able to discharge the battery until the voltage reaches to zero volts. The phase-shifted full bridge method is used to charge the battery and the current-fed push-pull method with bidirectional switches is used for the discharge. The ZVS turn-on is achieved in the charge operation and the ZVS turn-off in the discharge operation. The performance of the system is verified by the experiments using lithium-ion batteries.

  • PDF