Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01179

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents  

Song, Hee-Youb (VIZTRO MILTECH.)
Jung, Moon-Hyung (VITZROCELL Co., Ltd.)
Jeong, Soon-Ki (Department of Energy Systems, Soonchunhyang University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.4, 2020 , pp. 430-436 More about this Journal
Abstract
Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.
Keywords
Lithium Thionyl Chloride; Multi-Wall Carbon Nanotube; Acetylene Black; Lithium Primary Batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.J. Hills and N.A. Hampson, J. Power Sources, 1988, 24(4), 253-271.   DOI
2 T. Placke, R. Kloepsch, S. Duhnen, and M. Winter, J. Solid State Electrochem., 2017, 21(7), 1939-1964.   DOI
3 J.J. Auborn, K.W. French, S.I. Sheldon, I. Lieberman, Shah V.K., Heller A., J. Electrochem. Soc., 1973, 120(12), 1613.   DOI
4 B.J. Carter, R.M. Williams, F.D. Tsay, A. Rodriguez, S. Kim, M.M. Evans, and H. Frank, J. Electrochem. Soc., 1985, 132(2), 525.   DOI
5 A.N. Dey, Electrochim. Acta, 1976, 21(11), 855-860.   DOI
6 V.S. Bagotzky, V.E. Kazarinov, Y.M. Volfkovich, L.S. Kanevsky, and L.A. Beketayeva, J. Power Sources, 1989, 26(3-4), 427-433.   DOI
7 Y. Zhang and C.S. Cha, Electrochim. Acta, 1993, 38(6), 827-834.   DOI
8 M. Jakic, M. Kovac, M. Gaberscek, and S. Pejovnik, Electrochim. Acta, 1995, 40(17), 2723-2729.   DOI
9 D. Carmier, C. Vix-Guterl, and J. Lahaye, Carbon, 2001, 39(14), 2181-2186.   DOI
10 S.B. Lee, S.I. Pyun, and E.J. Lee, Electrochim. Acta, 2001, 47(6), 855-864.   DOI
11 C.H. Kim and S.I. Pyun, J. Electrochem. Soc., 2003, 150(9), A1176.   DOI
12 Y. Gao, L Chen, M. Quan, G. Zhang, G. Zheng, and J. Zhao, J. Electroanal. Chem., 2018, 808, 8-13.   DOI
13 C. Du, S. Liu, W. Zhang, X. Zhang, and Y. Deng, J. Electrochem. Soc., 2018, 165(9), A1955.   DOI
14 K. Fujisawa, H.J. Kim, S.H. Go, H. Muramatsu, T. Hayasi, M. Endo, T.C. Hirschmann, M.S. Dresselhaus, Y.A. Kim, and P.T. Araujo, Appl. Sci., 2016, 6(4), 109.   DOI
15 W.-S. Zhao, K. Fu, D.-W. Wang, M. Li, G. Wang, and W.-Y. Yin, Appl. Sci., 2019, 9(11), 2174.   DOI
16 H. Lyu, C.J. Jafta, I. Popovs, H.M. Meyer, J.A. Hachtel, J. Huang, B.G. Sumpter, S. Dai, and X.-G. Sun, J. Mater. Chem. A, 2019, 7(30), 17888-17895.   DOI
17 S. Qiu, G. Lu, J. Liu, H. Lyu, C. Hu, B. Li, X. Yan, J. Guo, and Z. Guo, RSC Adv., 2015, 5(106), 87286-87294.   DOI
18 X. Li, H Gu., J. Liu, H. Wei, S. Qiu, Y. Fu, H. Lv, G. Lu, Y. Wang, and Z. Guo, RSC Adv., 2015, 5(10), 7237-7244.   DOI
19 J. Candy, P. Fouilloux, M. Keddam, and H. Takenouti, Electrochim. Acta, 1981, 26(8), 1029-1034.   DOI
20 F. Walsh, M. Pozin, A. Cherniy, and Jr.K. Tikhonov, J. Power Sources, 2001, 97, 714-718.   DOI
21 T. Osaka, D. Mukoyama, and H. Nara, J. Electrochem. Soc., 2015, 162(14), A2529.   DOI
22 Y. Lee, D. Kim, S. Kim, M. Kim, H. Choe, K. Lee, J. Sohn, S. Cha, J. Kim, and K. Park, ACS Appl. Mater. Interfaces, 2016, 8(11), 7022-7029.   DOI
23 K. Li, Z. Xu, X. Shen, K. Yao, J. Zhao, R. Zhang, J. Zhang, L. Wang, and J. Zhu, Electrochim. Acta, 2019, 295, 569-576.   DOI
24 M. A. Zabara, C.B. Uzundal, and B. Ulgut, J. Electrochem. Soc., 2019, 166(6), A811.   DOI