• Title/Summary/Keyword: Discharge nozzle

Search Result 167, Processing Time 0.025 seconds

Factors influencing on the discharge coefficients of sonic nozzle (소닉노즐의 유출계수에 영향을 미치는 인자에 관한 연구)

  • Yu, Seong-Yeon;Lee, Sang-Yun;Park, Gyeong-Am
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4027-4035
    • /
    • 1996
  • Accuracy of gas flow measurements using sonic nozzle and factors which influence on the discharge coefficients of sonic nozzle are investigated with high pressure gas flow standard measurement system. The gas flow measurement system comprises two compressors, storage tank, temperature control loop, sonic nozzle test section, weighing tank, gyroscopic scale and data acquisition system. The experiments are performed at various nozzle throat diameter and inlet pressure. Overall uncertainty of discharge coefficients is estimated to less than .+-.0.2% and most of experimental data fall into this range. Dependence of discharge coefficients on the Reynolds number is good agreement with those suggested in ISO document. The influence of swirl on the discharge coefficients becomes greater as the nozzle throat diameter is enlarged. The discharge coefficient of conical nozzle shows about 4.5% lower discharge coefficients than those of toroidal nozzle, but variation trend with Reynolds number is very similar each other and reproducibility of data is very good.

A Study on the Flow Characteristics of the Spray Nozzle (관창의 유동특성에 관한 연구)

  • 이동명
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.55-60
    • /
    • 2003
  • This study established analysis theory for flow characteristics prediction of the spray nozzle and predicted discharge and discharge type of the spray nozzle from numerical analysis. It could know that discharge type of the spray nozzle from prediction data determine to position of nozzle and needle, and flow characteristics prediction of the spray nozzle could know that the characteristics according to shape of nozzle and needle is decided. New model of the spray nozzle that can maximize efficiency of fire suppression from flow characteristics and prediction data of the spray nozzle is presented. The result of this study utilize to data necessary to develop new model of the spray nozzle. Also the result of this study wish to contribute to resource technology security of the spray nozzle, technique ripple effect enlargement of same kind industry and technical development activation of fire protection field etc.

Effect of the Nozzle Curvature on Critical Flows (임계노즐 유동에 미치는 노즐 곡률의 영향)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.331-336
    • /
    • 2002
  • Recently the critical nozzles with small diameter are being extensively used to measure mass flow in a variety of industrial fields and these have different configurations depending on operation condition and working gas. The curvature radius of the critical nozzle throat is one of the most important configuration factors promising a high reliability of the critical nozzle. In the present study, computations using the axisymmetric, compressible, Navier-Stokes equations are carried out to investigate the effect of the nozzle curvature on critical flows. The diameter of the critical nozzle employed is D=0.3mm and the radius of curvature of the critical nozzle throat is varied in the range from 1D to 3D. It is found that the discharge coefficient is very sensitive to the curvature radius(R) of critical nozzle, leading to the peak discharge coefficient at R = 2.0D and 2.5D, and that the critical pressure ratio increases with the curvature radius.

  • PDF

A CFD Prediction of a Micro Critical Nozzle Flow (마이크로 임계노즐 유동의 CFD 예측)

  • Kim, Jae-Hyung;Woo, Sun-Hun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.652-657
    • /
    • 2001
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $k-\varepsilon$ turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

  • PDF

A Study on the Characteristics of the Spraying Nozzle on Paddy Levee (휴반 살포용 노즐의 분무특성에 관한 연구)

  • 최규홍;손낙율
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.2
    • /
    • pp.3758-3762
    • /
    • 1975
  • In order to find out the optimum size of nozzle of the power sprayer in the paddy field, four different sized hole of nozzles were tested on its discharge volume per unit time and its effective covering distance. 1. The discharge rate of each nozzle is proportional to square root of the transmitted internal pressure of liquid, and the discharge coefficient ranges from 0.82 to 0.86 at the pressure of 20 to 30 kg/$\textrm{cm}^2$. 2. The effective covering distance is increased as the size of the hole is larded and also the pressure is increased under under the limited pressure. Generally, the effective covering distance is not greatly increased at the pressure of above 25kg/$\textrm{cm}^2$. The distance from the nozzle to the spot where the largest amount of droplets are dropped is about 14.5m for 3.05mm nozzle and 16m for 4.05mm nozzle in the pressure range from 20 to 25kg/$\textrm{cm}^2$. 3. From the above results it is concluded that the 3mm nozzle with the power sprayers, which are now being supplied to the farmers, can be used for disease and insect control on the paddy field of which block size is 30m${\times}$100m, and operators need not to enter the field for spraying. For the 40m${\times}$100m block, 4mm nozzle should be used with large size of pump which discharge capacity is 60l/min or more.

  • PDF

An Experimental Study of Discharge Coefficient with Non-Circular Effervescent Type Twin-fluid Nozzle (비원형 Effervescent Type 이유체노즐의 Discharge Coefficient에 관한 실험적 연구)

  • Lee, Sang Ji;Park, Hyung Sun;Hong, Jung Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.682-685
    • /
    • 2017
  • An experimental study was carried out to investigate the injection characteristics of non-circular effervescent type twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and one kind of circular nozzle (C) were used. At this time, the Aerorator mounted on the nozzle used three different diameters to match the aspect ratio with the nozzle exit area. Therefore, experiments were performed according to three aspect ratios for each nozzle, and a total experiments were conducted. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzle. The discharge coefficients of the three kinds of nozzles were compared with the conventional equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 4 times larger. The droplet size (SMD) injected from the nozzle was found to be smaller in the non-circular shape than in the circular shape, which is expected to be caused by the difference of the discharge coefficient values.

  • PDF

Experimental / Computational Study of a variable Critical Nozzle Flow (가변형 임계노즐 유동에 관한 실험/수치해석적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.167-173
    • /
    • 2003
  • For the measurement of mass flow rate at a wide range of operation conditions, it is required that the critical nozzle gas different diameters, since the mass flow rate through the critical nozzle depends on the nozzle supply conditions and the nozzle throat diameter. In the present study, both computational and experimental investigations are performed to explore the variable critical nozzle. Computational work using the 2-dimensional, axisymmetric, compressible Navier-Stokes equations are carried out to simulate the gas flow through variable critical nozzle. In experimnet, a cylinder with several different diameters is inserted into the critical nozzle to vary the nozzle throat diameter. Computational results are compared with the experimented ones. The computed results are in close agreement with experiment. It is found that the displacement and momentum thickness of variable critical nozzle are given as a function of Reynolds numbers. The discharge coefficient of the variable critical nozzle is predicted using an empirical equation.

  • PDF

Study for Conductive and Non-conductive Multi-layers Depth Profiling Analysis of Radio Frequency Gas-jet Boosted Glow Discharge Spectrometry (Modified Gas-jet Boosted Radio-frequency Glow Discharge 셀의 개발 및 최적화에 관한 연구)

  • Cho, Won Bo;Borden, Stuart;Jeong, Jong Pil;Kang, Won Kyu;Kim, Kyu Whan;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.108-114
    • /
    • 2002
  • The new system using a glow discharge atomic emission spectrometer for the direct analysis of solid samples has been developed and characterized. The system was consisted of new glow discharge cell improved previous gas-jet boosted nozzle and radio-frequency power supply. In the case of previous type glow discharge chamber, it had been fitted trace analysis of low alloy steel with low discharge power, because it was to decrease redeposition and increase sample weight loss. But it had a problem that plasma becomes unstale due to increased sample weight loss and redeposition resulting from the high discharge power. Because of being problem of previous glow discharge, it is impossible to analyze using high power. The modified gas-jet boosted glow discharge to solve this problem would improve to be less sample loss rate of modified nozzle than sample loss rate of previous nozzle on the equal discharge condition, and improve to increase stability of plasma. The effect of discharge parameters such as discharge pressure, gas flow rate and power on the sample loss rate, emission intensity has been studied to find optimum discharge conditions. The calibration curves of Fe were obtained with 3 low-alloy samples.

Thermal Characteristics of Foams and Discharge of Fire-Protection Foam Spray Nozzle (폼 분무 노즐 방사 분포 및 폼의 열적 특성 연구)

  • Kim, Hong-Sik;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.151-158
    • /
    • 2005
  • A characteristic of discharge for a foam spray nozzle with various parameters was investigated. The discharge patterns from a fire foam spray nozzle are important to evenly spray over a maximum possible floor area. Two parameters of a foam spray nozzle were chosen, and compared with those from the standard one. Also, in order to evaluate the performance of discharged foam agents used to protect structures from heat and fire damages, the thermal characteristics of fire-protection foams were experimentally investigated. A simple repeatable test for fire-protection foams subjected to fire radiation was developed. This test involves foam generation equipment, a fire source for heat generation, and data acquisition techniques. Results show that the bubble size of foam is increased by large inside diameter of orifice or closed air hole, but phenomenon of discharge angle and expansion ratio is opposite. For the case of the open air hole, liquid film of a circular cone discharges with formation, growth, split and fine grain. In case of the closed air hole, a pillar of foam solution discharges with that. Though the temperature gradient in the foam increases with increased foam expansion ratio. it is not change with increased intensity of heat flux.

Thrust Performances of a Very Low-Power Micro-Arcjet

  • Hotaka Ashiya;Tsuyoshi Noda;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.611-616
    • /
    • 2004
  • In this study, microfabrication of a micro-arcjet nozzle with Fifth-harmonic generation Nd:YAG pulses (wavelength 213 nm) and its thrust performance tests were conducted. A micro-arcjet nozzle was machined in a 1.2 mm thick quartz plate. Sizes of the nozzle were 0.44 mm in width of the nozzle exit and constrictor diameter of 0.1 mm. For an anode, a thin film of Au (~100 nm thick) was deposited by DC discharge PVD in vacuum on divergent part of the nozzle. As for a cathode, an Au film was also coated on inner wall surface. In operational tests, a stable discharge was observed for mass flow of 1.0mg/sec, discharge current of 6 ㎃, discharge voltage of 600 V, or 3.6 W input power (specific power of 3.6 MW/kg). In this case, plenum pressure of the discharge chamber was 80 ㎪. With 3.6 W input power, thrust obtained was 1.4 mN giving specific impulse of 138 sec with thrust efficiency of 24 %.

  • PDF