• Title/Summary/Keyword: Discharge Characteristics

Search Result 3,788, Processing Time 0.038 seconds

Chemical Properties and Nutrient Loadings of Rainwater during Farming Season (영농기 강우의 화학적 특성 및 부하량 평가)

  • Ko, Byong-Gu;Kim, Min-Kyeong;Lee, Jong-Sik;Kim, Gun-Yeob;Park, Seong-Jin;Kwon, Soon-Ik;Jung, Goo-Buk;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.578-583
    • /
    • 2010
  • Acid rain and its problem to environment such as acid precipitation and environmental problems related to the air pollution in East Asia has been emerging. To evaluate the acidity and chemical characteristics of rainwater precipitated in western Korea, Suwon and Taean, its pH and ion concentrations were investigated during farming season (April to November) in 2009. Also, ion composition and cation-affected neutralization were determined to evaluate the contribution of cations on the acidity of rainwater. Ion and electrical conductivity between the measured and the estimated showed high correlation. The $Na^+$ in rainwater was the main cation followed by ${NH_4}^+>Ca^{2+}>H^+>Mg^{2+}>K^+$. Sum of $Na^+$ and ${NH_4}^+$ contents was over 65% of total cations contents. In the case of anions, the concentration was in order of ${SO_4}^{2-}>{NO_3}^->Cl^-$. The ${SO_4}^{2-}$ among anions in rainwater composed about 61%, which showed on average 130.2 ${\mu}eq\;L^{-1}$ and 121.3 ${\mu}eq\;L^{-1}$ during monitoring at Suwon and Taean, respectively. Also, 89.6 and 88.6% of soluble sulfate in rainwater at Suwon and Taean area was NSS-${SO_4}^{2-}$ (Non-Sea Salt sulfate). Especially, ${NH_4}^+$ and $Ca^{2+}$ contributed greatly in neutralizing the acid rain in dry season. Total nitrogen content flowed into soil from rain was around 1~2 kg $ha^{-1}$ in each month, but in July at Suwon, it reached 6 kg $ha^{-1}$ due to heavy rain (over 7.3 mm).

Development of an anisotropic spatial interpolation method for velocity in meandering river channel (비등방성을 고려한 사행하천의 유속 공간보간기법 개발)

  • You, Hojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.455-465
    • /
    • 2017
  • Understanding of the two-dimensional velocity field is crucial in terms of analyzing various hydrodynamic and fluvial processes in the riverine environments. Until recently, many numerical models have played major roles of providing such velocity field instead of in-situ flow measurements, because there were limitations in instruments and methodologies suitable for efficiently measuring in the broad range of river reaches. In the last decades, however, the advent of modernized instrumentations started to revolutionize the flow measurements. Among others, acoustic Doppler current profilers (ADCPs) became very promising especially for accurately assessing streamflow discharge, and they are also able to provide the detailed velocity field very efficiently. Thus it became possible to capture the velocity field only with field observations. Since most of ADCPs measurements have been mostly conducted in the cross-sectional lines despite their capabilities, it is still required to apply appropriate interpolation methods to obtain dense velocity field as likely as results from numerical simulations. However, anisotropic nature of the meandering river channel could have brought in the difficulties for applying simple spatial interpolation methods for handling dynamic flow velocity vector, since the flow direction continuously changes over the curvature of the channel shape. Without considering anisotropic characteristics in terms of the meandering, therefore, conventional interpolation methods such as IDW and Kriging possibly lead to erroneous results, when they dealt with velocity vectors in the meandering channel. Based on the consecutive ADCP cross-sectional measurements in the meandering river channel. For this purpose, the geographic coordinate with the measured ADCP velocity was converted from the conventional Cartesian coordinate (x, y) to a curvilinear coordinate (s, n). The results from application of A-VIM showed significant improvement in accuracy as much as 41.5% in RMSE.

Effect and uncertainty analysis according to input components and their applicable probability distributions of the Modified Surface Water Supply Index (Modified Surface Water Supply Index의 입력인자와 적용 확률분포에 따른 영향과 불확실성 분석)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Oh, Ji Hwan;Jo, Joon Won
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.475-488
    • /
    • 2017
  • To simulate accurate drought, a drought index is needed to reflect the hydrometeorological phenomenon. Several studies have been conducted in Korea using the Modified Surface Water Supply Index (MSWSI) to simulate hydrological drought. This study analyzed the limitations of MSWSI and quantified the uncertainties of MSWSI. The influence of hydrometeorological components selected as the MSWSI components was analyzed. Although the previous MSWSI dealt with only one observation for each input component such as streamflow, ground water level, precipitation, and dam inflow, this study included dam storage level and dam release as suitable characteristics of the sub-basins, and used the areal-average precipitation obtained from several observations. From the MSWSI simulations of 2001 and 2006 drought events, MSWSI of this study successfully simulated drought because MSWSI of this study followed the trend of observing the hydrometeorological data and then the accuracy of the drought simulation results was affected by the selection of the input component on the MSWSI. The influence of the selection of the probability distributions to input components on the MSWSI was analyzed, including various criteria: the Gumbel and Generalized Extreme Value (GEV) distributions for precipitation data; normal and Gumbel distributions for streamflow data; 2-parameter log-normal and Gumbel distributions for dam inflow, storage level, and release discharge data; and 3-parameter log-normal distribution for groundwater. Then, the maximum 36 MSWSIs were calculated for each sub-basin, and the ranges of MSWSI differed significantly according to the selection of probability distributions. Therefore, it was confirmed that the MSWSI results may differ depending on the probability distribution. The uncertainty occurred due to the selection of MSWSI input components and the probability distributions were quantified using the maximum entropy. The uncertainty thus increased as the number of input components increased and the uncertainty of MSWSI also increased with the application of probability distributions of input components during the flood season.

The Analysis of Disease Distribution of patients discharged from a general hospital in a farming and fishing village region (일개 종합병원을 이용한 농.어촌지역 퇴원환자의 질병분포에 관한 연구)

  • Yu, Eun-Yeong;Kim, Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4863-4872
    • /
    • 2010
  • This study examined the disease conditions of patients from a farming and fishing village area. In order to analyze the medical service utilization, the necessary data were obtained from established health and medical care service plans from medical treatment related organizations. The following results were based on the analysis of data from the medical records of 2,365 discharged patients during a six months period from July to December 2009 at a general hospital in an aging farming and fishing village area. Results: The sex of the patients investigated was male 55.3%, female 44.7%, and the most frequent age category at 42.0% was 70 years of age or older. Based on type of hospital admission, 65.5% of patients who were admitted were originally outpatients. Patients were admitted according to the following departments: 49.7% for the department of internal medicine, 16.7% for the department of orthopedics, and 13.8% for the department of neurosurgery. The average number of days hospitalized was 14.8 days. The following ranks the principal diagnosis among patients in this study: S00-T98 18.4%, J00-J99 15.5%, and I00-I99 11.5%. The average number of diagnosis listed per patient was 5.6. There was a statistically significant difference for the following general characteristics according to principal diagnosis list: gender, type of insurance, admission process, and age category distribution had statistically significant differences. Monthly distribution of principal diagnoses were statistically significant difference. There was a statistically significant difference for principal diagnosis lists according to the average number of days admitted and the number of diagnosis. The results of this study showed the types of disease from typical farming and fishing village regions as disease from external injury due to the work environment of farming and fishing village regions and excessive labor throughout the year, respiratory disease, and various chronic disease from aging.

Postoperative Atrial Fibrillation after Isolated Coronary Artery Bypass Graft Surgery (단독관상동맥우회로술 후 발생한 심방세동)

  • Suh, Jong-Hui;Park, Chan Beom;Moon, Mi-Hyoung;Kweon, Jong Bum;Kim, Young-Du;Jin, Ung;Moon, Seok-Whan;Kim, Chi-Kyung
    • Journal of Chest Surgery
    • /
    • v.42 no.1
    • /
    • pp.14-21
    • /
    • 2009
  • Background: Postoperative atrial fibrillation (AF) is a common complication after coronary artery bypass graft (CABG) surgery. Although postoperative AF is regarded as benign, transient and self-limited, it has been associated with increased morbidity, thromboembolic events and an increased duration and cost of hospitalization. Material and Method: From January 1994 to December 2007, 190 patients that had isolated CABG surgery were divided into two groups. Group 1 (n=139) involved those who had postoperative atrial fibrillation, and group 2 (n=51) did not have any such events. We reviewed the medical records retrospectively including the incidence of postoperative AF, patient characteristics, surgery related factors and the outcome of the patients with postoperative AF. Result: The frequency of postoperative AF was 26.8%, the conversion rate to regular sinus rhythm before discharge was 82.4%; 82.4% of the AF developed within the first three postoperative days. Although the postoperative AF group was significantly older and had a prolonged postoperative Intensive care unit (ICU) stay, there was no difference in the aortic crossclamp time or duration of hospitalization. No spontaneous defibrillation at declamping, and longer duration of cardiopulmonary bypass were significantly related to the development of postoperative AF. However, postoperative treatment with a beta blocker was associated with a decreased incidence of postoperative AF. The multivariate analysis showed that age and ICU stay were significantly associated with the development of POAF. Spontaneous defibrillation and postoperative beta blocker treatment were significantly associated with a decreased frequency of POAF. Conclusion: AF after CABG surgery is a common complication associated with increased morbidity and a longer ICU stay. Therefore, various strategies aimed at reducing AF, and its complications, such as postoperative treatment with a beta blocker should be considered.

Survey of Physicochemical Methods and Economic Analysis of Domestic Wastewater Treatment Plant for Advanced Treatment of Phosphorus Removal (총인 수질기준강화를 위한 국내 하수종말처리장의 물리화학적처리 특성조사 및 경제성 분석)

  • Park, Hye-Young;Park, Sang-Min;Lee, Ki-Cheol;Kwon, Oh-Sang;Yu, Soon-Ju;Kim, Shin-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.212-221
    • /
    • 2011
  • Wastewater treatment plants (WWTPs) are required to meet the reinforced discharge standards which are differentiated as 0.2, 0.3 and 0.5 mg-TP/L for the district I, II and III, respectively. Although most of WWTPs are operating advanced biological phosphorus removal system, the supplementary phosphorus treatment facility using chemical addition should be required almost at all WWTPs. Therefore, water quality data from several exemplary full-scale plants operating phosphorus treatment process were analyzed to evaluate the reliability of removal performance. Additionally, a series of jar tests were conducted to find optimal coagulants dose for phosphorus removal by chemical precipitation and to describe characteristics of the reaction and sludge production. Chemical costs and the increasing sludge volume in physicochemical phosphorus removal process were estimated based on the results of jar tests. The minimum coagulant (aluminium sulfate and poly aluminium chloride) doses to keep TP concentration below 0.5 and 0.2 mg/L were around 25 and 30 mg/L (as $Al_2O_3$), respectively, in the mixed liquor of activated sludge. In the tertiary treatment facility, relatively lower coagulant doses of 1/12~1/3 the minimum doses for activated sludge were required to achieve the same TP concentrations of 0.2~0.5 mg/L. Increase in suspended solids concentration due to chemical precipitates in mixed liquor was estimated at 10~11%, compared to the concentration without chemical addition. When coagulant was added into mixed liquor, chemical (aluminium sulfate) cost was estimated to be 4~10 times higher than in secondary effluent coagulation/separation process. Sludge production to be wasted was also 4~10 times higher than secondary effluent coagulation/separation process.

Study on characteristics of specific hazardous substances in the industrial wastewater effluent (사업장 방류수 중 특정수질유해물질 배출 특성 연구)

  • Kim, Seungho;Choi, Youngseop;Kim, Yunhee;Kim, Jongmin;Chang, Gilsik;Bae, Seokjin;Cho, Younggwan
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.114-125
    • /
    • 2016
  • In this study, 165 wastewater discharge facilities in 10 business types were investigated with regard to 24 specific hazardous substances that included heavy metals, VOCs, CN, and phenol in the Gwangju city. Cu in the range from from 0.008 to 35.420 mg/L was detected in all business types and the detection rate was 46.8 %. Other heavy metals, such as Cd, As, Hg, Pb, and Cr+6 were detected as well. However, their detection rates ranged between 0.6 and 1.8 %. CN and phenol were detected in one and five facilities, respectively. 12 species of VOCs were detected: chloroform 80.6 % (0.42 to 81.60 μg/L), benzene 16.4 % (1.49 to 3.31 μg/L), trichloroethylene 11.5 % (1.78 to 6.02 μg/L), 1,1-dichloroethylene 10.3 % (1.23 to 5.89 μg/L), and dichloromethane 8.5 % (0.28 to 968.86 μg/L) in the detection rate order. The concentration of VOCs was detected in trace amounts, except for dichloromethane that exceeded the effluent quality standard in three business types, namely, metal manufacturing, food industry, and car washing facility. Chloroform was detected in all business types, where 24.88 μg/L were detected in the laundry business and 53.41 μg/L in the water supply business; the mean concentration of chloroform in these two business types was higher than elsewhere. Therefore, for the disposal of non-degradable specific hazardous substances in industrial wastewater, it is necessary to introduce physical and chemical processes, such as activated carbon adsorption, fenton oxidation, ozone treatment, as well as photocatalyst and the UV radiation.

A Study on Process Optimization for CSOs Application of Horizontal Flow Filtration Technology (수평흐름식 여과기술의 CSOs 적용을 위한 공정 최적화 연구)

  • Kim, Jae-Hak;Yang, Jeong-Ha;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.56-63
    • /
    • 2018
  • The management of Combined Sewer Overflows(CSOs) and Separated Sewer Overflows(SSOs) discharge directly to the effluent system in an untreated state, which occurs when the facility capacity is exceeded due to heavy rain, has become an important issue in recent years as the heavy rain becomes a regular phenomenon. Despite the continuous development of filtration technology, targeting densely populated urban areas, CSOs are rarely applied. Therefore, this study was carried out to optimize the process to apply CSOs in a pilot-scale horizontal flow filtration system with a rope-type synthetic fiber. The research was carried out in two steps: a preliminary study using artificial samples and a field study using sewage. In the preliminary study using an artificial sample, head loss of the filter media itself was analyzed to be approximately 1.1cm, and the head loss was increased by approximately 0.1cm as the linear velocity was increased by 10m/hr. In addition, the SS removal efficiency was stable at 81.4%, the filtration duration was maintained for more than 6 hours, and the average recovery rate of 98% was obtained by air backwashing only. In the on-site evaluation using sewage, the filtration duration was approximately 2 hours and the average removal efficiency of 83.9% was obtained when belt screen (over 450 mesh) was applied as a pre-treatment process to prevent the premature clogging of filter media. To apply the filtration process to CSOs and SSOs, it was concluded that the combination with the pre-treatment process was important to reinforce the hydraulic dimension for the stable maintain of operation period, rather than efficiency. Compared to the dry season, the quality of incoming sewage was lower in the rainy season, which was attributed to the characteristics of the drainage area with higher sanitary sewerage. In addition, the difference in removal efficiency according to the influent quality of the wet season and dry season was small.

Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly ($17{\times}17$ KOFA 사용후핵연료집합체내 구조재의 방사선원항 특성 분석)

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2010
  • Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be $1.40{\times}10^{15}$ Bequerels, 236 Watts, $4.34{\times}10^9m^3$-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20~45 % and 30~45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.

The Study of Operating Conditions by Establishing Density Currents Generator for Improving of Water Quality on Lake Water - With Focus on DO and Water Temperature - (호소수의 수질개선을 위한 DCG 설치시 운전조건에 관한 연구 - DO와 수온을 중심으로 -)

  • Lee, Young-Shin;Han, Kyung-Hee;Kim, Young-Kyu;An, Hyung-Chul;Shin, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.286-294
    • /
    • 2014
  • The purpose of this study is to investigate the effects of applying density current generator (hereafter referred to as DCG to large lakes on the operating conditions of DCG, de-stratification, water quality improvement and inhibition of algae occurrence. As a result of a survey conducted to derive the optimum operating parameters of DCG in a condition to minimize eco-toxicity, the following conclusions were obtained. During the survey period, a marked stratification appeared in September to October 2011 and May 2012. At this time, the average depth of water to form thermocline was found to be $5{\pm}2$ m, so the location of discharge port for the operation of DCG was determined to be about 5 m below from the surface. To minimize the adverse effects of benthos and obtain the effect of water mixture at the time of water circulation, the mixing ratio of surface water and deep water was designed to be 3:1 by means of ecotoxicological assessment on the DCG operating characteristics. To select the appropriate operating hours for DCG, DCG was operated by 12 hr, 24 hr, 36 hr and 48 hr. As its result, the formation of thermocline did not occur during the operation of 36 hr. Also, It was effected that start reoperating from 3rd day after stop 2days under the condition of operated during 36 hr with calculated power consumption. Under the above conditions, the results of DO and water temperature analysis during the operation of DCG showed that the stratification, which was distinct previously, appeared to be weak, and relatively lower levels than those before operation were found as a result of water quality analysis on COD and chlorophyll-a, which leads to the conclusion that the water body is maintained at a stable condition due to the circulation of water by the occurrence of density current resulting from the operation of DCG.