DOI QR코드

DOI QR Code

Survey of Physicochemical Methods and Economic Analysis of Domestic Wastewater Treatment Plant for Advanced Treatment of Phosphorus Removal

총인 수질기준강화를 위한 국내 하수종말처리장의 물리화학적처리 특성조사 및 경제성 분석

  • Park, Hye-Young (Water Environment Control Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Park, Sang-Min (Water Environment Control Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Lee, Ki-Cheol (Water Environment Control Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Kwon, Oh-Sang (Water Environment Control Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Yu, Soon-Ju (Water Environment Control Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Shin-Jo (Water Environment Control Research Division, Water Environment Research Department, National Institute of Environmental Research)
  • 박혜영 (국립환경과학원 물환경연구부 물환경공학연구과) ;
  • 박상민 (국립환경과학원 물환경연구부 물환경공학연구과) ;
  • 이기철 (국립환경과학원 물환경연구부 물환경공학연구과) ;
  • 권오상 (국립환경과학원 물환경연구부 물환경공학연구과) ;
  • 유순주 (국립환경과학원 물환경연구부 물환경공학연구과) ;
  • 김신조 (국립환경과학원 물환경연구부 물환경공학연구과)
  • Received : 2010.11.05
  • Accepted : 2011.03.24
  • Published : 2011.03.31

Abstract

Wastewater treatment plants (WWTPs) are required to meet the reinforced discharge standards which are differentiated as 0.2, 0.3 and 0.5 mg-TP/L for the district I, II and III, respectively. Although most of WWTPs are operating advanced biological phosphorus removal system, the supplementary phosphorus treatment facility using chemical addition should be required almost at all WWTPs. Therefore, water quality data from several exemplary full-scale plants operating phosphorus treatment process were analyzed to evaluate the reliability of removal performance. Additionally, a series of jar tests were conducted to find optimal coagulants dose for phosphorus removal by chemical precipitation and to describe characteristics of the reaction and sludge production. Chemical costs and the increasing sludge volume in physicochemical phosphorus removal process were estimated based on the results of jar tests. The minimum coagulant (aluminium sulfate and poly aluminium chloride) doses to keep TP concentration below 0.5 and 0.2 mg/L were around 25 and 30 mg/L (as $Al_2O_3$), respectively, in the mixed liquor of activated sludge. In the tertiary treatment facility, relatively lower coagulant doses of 1/12~1/3 the minimum doses for activated sludge were required to achieve the same TP concentrations of 0.2~0.5 mg/L. Increase in suspended solids concentration due to chemical precipitates in mixed liquor was estimated at 10~11%, compared to the concentration without chemical addition. When coagulant was added into mixed liquor, chemical (aluminium sulfate) cost was estimated to be 4~10 times higher than in secondary effluent coagulation/separation process. Sludge production to be wasted was also 4~10 times higher than secondary effluent coagulation/separation process.

우리나라의 공공하수처리시설은 생물학적 인 제거공정을 운전하고 있으나, '12년부터 지역구분(I, II, III)에 따라 각각 0.2, 0.3 및 0.5 mg/L로 강화되는 방류수수질기준을 준수하기 위해서는 화학물질을 이용한 추가적인 인 처리시설을 적용할 필요성이 대두되었다. 강화된 총인의 수질기준을 만족하기 위해 적용된 물리화학적 처리기술 성능의 구체적인 운영자료 구축을 위하여, 화학적 응집제 사용 중인 인 처리시설 중 모범적으로 가동하고 있는 국내 시설의 운영 데이터를 분석하여 처리성능을 평가하였다. 또한, jar 테스트를 이용해 물리화학적 인 제거공정 적용 시 최적 응집제 주입율 도출, 인 제거 및 슬러지 발생특성을 관찰하고 약품비용과 슬러지 발생증가량을 산정하여 실처리장에 응집제 적용 시 예상되는 경제성 분석을 하였다. 활성슬러지를 이용한 jar 테스트 결과, 0.5와 0.2 mg/L 이하의 총인 농도를 달성하기 위해 필요한 최소한의 응집제(황산알루미늄, 폴리염화알루미늄)의 주입농도는 각각 25와 30 mg/L (as $Al_2O_3$)이며, 2차 처리수의 경우에는 동일한 총인 농도를 달성하기 위해 요구되는 응집제 주입농도가 활성슬러지에 비해 약 1/12~1/3 수준으로 감소하였다. jar 테스트 결과, 활성슬러지에 응집제를 주입할 경우에 고형물 농도가 약 10~11%가 증가할 것으로 예측되었다. 한편, 활성슬러지에 응집제를 주입하는 경우의 응집제(황산알루미늄) 구입비는 2차 처리수에 주입하는 경우에 비해 약 4~10배 정도가 증가할 것으로 산정되었다. 또한, 슬러지 발생량은 약 4~10배 정도 증가할 것으로 예측되었다.

Keywords

References

  1. 한강수계관리위원회, 상수원 호소 상류지역의 물리화학적인 처리 도입 타당성 검토, 국립환경과학원, 한강물환경연구소(2008).
  2. 환경부, 환경백서(2007).
  3. 한국환경공단, 하수처리시설 총인 처리강화 시범운영 연구, 환경부(2009).
  4. Rittmann, B. E. and McCarty, P. L., Environmental Biotechnology, McGraw Hill Korea, 579-590(2002).
  5. Dave, Clark P. E. April Z. Gu and JB Neethling, P.E., Achieving extremely low effluent phosphorus in wastewater treatment Waterscrapes, 16, 3(2005).
  6. U.S. EPA REGION 10, April, Advanced treatment to achieve concentration of phosphorus(2007).
  7. Jeyanayagam, S., "True confessions of the biological nutrient removal process," Florida water resources journal: January (2005).
  8. Bott, C. B., Murthy, S. N., Spano, T. T. and Randall, C. W., WEFR Workshop on nutrient removal: how low can we go and what is stopping us from going lower? Alexandria, VA: WERF(2007).
  9. 황응주, 천효창, "생물공정처리수의 PAC 응집에 의한 고효율 인제거 특성," 대한환경공학회지, 31(8), 673-678(2009).
  10. Guibelin, E., Delsalle, F. and Binot, P., "The ACTIFLO process: A high compact and efficient process to prevent water pollution by stormwater flows," Water Sci. Technol., 30(1), 86-88(1994).
  11. 우승준, 이찬기, 김성석, 최규열, 이해금, "춘천시 하수처리시설의 처리공정에서 인의 거동과 존재형태," 한국수질보전학회지, 9(2), 98-104(1993).
  12. Reardon, Rodric C., Tertiary clarifier design concepts and considerations. Presented at WEFTEC(2005).
  13. U.S. EPA, Nutrient control design manual state of technology review report(2009).
  14. WEF, Biological and chemical systems for nutrient removal, Water Envrionmental Federation 601 Wythe Street Alexandria, VA 22314-1994 USA(1998).
  15. 대구광역시환경시설공단, 수질오염총량제 실시에 대처할 고효율 총인 처리기술 개발(2008).

Cited by

  1. A Comparative Study on Start-up and Normal Operation Data for Phosphorus Removal in WWTPs vol.27, pp.1, 2013, https://doi.org/10.11001/jksww.2013.27.1.113
  2. Advanced total phosphorus removal approach: system design and combined sewer overflows (CSOs) sludge application vol.51, pp.19-21, 2013, https://doi.org/10.1080/19443994.2013.781103
  3. Phosphorus Removal from Advanced Wastewater Treatment Process Using PAC vol.36, pp.2, 2014, https://doi.org/10.4491/KSEE.2014.36.2.96
  4. A Feasibility Study on Optimization System of Coagulant Dosing for Total Phosphorous Treatment vol.36, pp.7, 2014, https://doi.org/10.4491/KSEE.2014.36.7.483
  5. Anaerobic Digestion Biochemical Sludge Produced from Municipal Sewage Treatment Process vol.36, pp.8, 2014, https://doi.org/10.4491/KSEE.2014.36.8.561
  6. Optimization of chemical precipitation for phosphate removal from domestic wastewater vol.30, pp.6, 2016, https://doi.org/10.11001/jksww.2016.30.6.663
  7. Applicability of Aminated Poly-GMA as an Adsorbent for Phosphorus Removal in Sewage Treatment vol.40, pp.3, 2018, https://doi.org/10.4491/KSEE.2018.40.3.123