DOI QR코드

DOI QR Code

Effect and uncertainty analysis according to input components and their applicable probability distributions of the Modified Surface Water Supply Index

Modified Surface Water Supply Index의 입력인자와 적용 확률분포에 따른 영향과 불확실성 분석

  • Jang, Suk Hwan (Department of Civil Engineering, Daejin University) ;
  • Lee, Jae-Kyoung (Innovation Center for Engineering Education, Daejin University) ;
  • Oh, Ji Hwan (Department of Civil Engineering, Daejin University) ;
  • Jo, Joon Won (Department of Civil Engineering, Daejin University)
  • 장석환 (대진대학교 건설시스템공학과) ;
  • 이재경 (대진대학교 공학교육혁신센터) ;
  • 오지환 (대진대학교 건설시스템공학과) ;
  • 조준원 (대진대학교 건설시스템공학과)
  • Received : 2017.03.16
  • Accepted : 2017.05.31
  • Published : 2017.07.31

Abstract

To simulate accurate drought, a drought index is needed to reflect the hydrometeorological phenomenon. Several studies have been conducted in Korea using the Modified Surface Water Supply Index (MSWSI) to simulate hydrological drought. This study analyzed the limitations of MSWSI and quantified the uncertainties of MSWSI. The influence of hydrometeorological components selected as the MSWSI components was analyzed. Although the previous MSWSI dealt with only one observation for each input component such as streamflow, ground water level, precipitation, and dam inflow, this study included dam storage level and dam release as suitable characteristics of the sub-basins, and used the areal-average precipitation obtained from several observations. From the MSWSI simulations of 2001 and 2006 drought events, MSWSI of this study successfully simulated drought because MSWSI of this study followed the trend of observing the hydrometeorological data and then the accuracy of the drought simulation results was affected by the selection of the input component on the MSWSI. The influence of the selection of the probability distributions to input components on the MSWSI was analyzed, including various criteria: the Gumbel and Generalized Extreme Value (GEV) distributions for precipitation data; normal and Gumbel distributions for streamflow data; 2-parameter log-normal and Gumbel distributions for dam inflow, storage level, and release discharge data; and 3-parameter log-normal distribution for groundwater. Then, the maximum 36 MSWSIs were calculated for each sub-basin, and the ranges of MSWSI differed significantly according to the selection of probability distributions. Therefore, it was confirmed that the MSWSI results may differ depending on the probability distribution. The uncertainty occurred due to the selection of MSWSI input components and the probability distributions were quantified using the maximum entropy. The uncertainty thus increased as the number of input components increased and the uncertainty of MSWSI also increased with the application of probability distributions of input components during the flood season.

정확히 가뭄을 모의하기 위해서는 수문기상학적 현상을 반영할 수 있는 가뭄지수가 필요하며, 국내에서 수문학적 가뭄을 모의하기 위해 MSWSI (Modified Surface Water Supply Index)를 활용한 여러 연구가 진행되었다. 본 연구에서는 MSWSI의 한계점을 분석하고 MSWSI의 불확실성을 정량화하였다. 우선 MSWSI 인자로서 활용가능한 수문기상인자의 선정에 따른 영향을 분석하였다. 기존 MSWSI에 적용한 하천유량, 지하수위, 강수, 댐유입량의 4개 입력인자별로 하나의 관측소자료만을 이용하였으나 본 연구에서는 중권역별 특성에 맞도록 댐저수위와 댐방류량도 포함하였으며, 여러 관측소의 자료를 취득하여 면적평균자료를 사용하였다. 2001년과 2006년 가뭄사례에 대해 MSWSI 모의검증 결과, 본 연구의 MSWSI가 실측수문기상자료의 경향을 더 잘 반영하여 가뭄을 모의하였으며, MSWSI 인자의 선정이 가뭄모의 정확성에 영향을 주는 것으로 나타났다. 다음으로 MSWSI 인자에 적용하는 확률분포의 선정에 따른 영향을 분석하였다. 강수자료는 Gumbel와 GEV 분포, 하천자료는 정규분포와 Gumbel 분포, 댐자료는 2-매개변수 대수정규분포와 Gumbel, 지하수는 3-매개변수 대수정규분포를 따르는 것으로 나타났다. 이에 따라 중권역별로 최대 36개의 MSWSI를 산정하였으며, 확률분포의 선정에 따라 MSWSI 범위가 매우 다르게 나타나 어떠한 확률분포을 적용하느냐에 따라 MSWSI 결과는 매우 달라질 수 있음을 확인하였다. 마지막으로 maximum entropy를 이용하여 MSWSI 입력인자의 선정과 입력인자별 확률분포 선정의 영향에 따른 불확실성을 정량화하였다. 분석결과, 입력인자의 수가 많이 적용될수록 불확실성은 증가하는 것으로 나타났으며, 홍수기에 MSWSI 입력인자별 확률분포 적용에 따라 MSWSI의 불확실성이 증가하는 것으로 나타났다.

Keywords

References

  1. Ahn, K., and Kim, Y.-O. (2010). "A study on improving drought indices and developing their outlook technique for Korea." Proceeding of Korea Water Resources Association, pp. 6-12.
  2. Dogan, S., Berktay, A., and Singh, V. P. (2012). "Comparison of multi-monthly rainfallbased drought severity indices, with application to semi-arid Konya closed basin, Turkey." Journal of Hydrology, Vol. 470, pp. 255-268.
  3. Gay, C., and Estrada, F. (2010). "Objective probabilities about future climate are a matter of opinion." Climatic Change, Vol. 99, pp. 27-46. https://doi.org/10.1007/s10584-009-9681-4
  4. Jang, S. H., Lee, J.-K., Oh, J. H., and Jo, J. W. (2016). "The probabilistic drought forecast based on ensemble using improvement of the modified surface water supply index." Journal of Korea Water Resources Association, Vol. 49, No. 10, pp. 835-849. https://doi.org/10.3741/JKWRA.2016.49.10.835
  5. Jaynes, E. T. (1957). "Information theory and statistical mechanics." The Physical Review, Vol. 106, pp. 620-630. https://doi.org/10.1103/PhysRev.106.620
  6. Karamouz, M., Rasouli, K., and Nazif, S. (2009). "Development of a hybrid index for drought prediction: case study." Journal of Hydrologic Engineering, 10.1061/(ASCE)HE.1943-5584.0000022, pp. 617-627.
  7. Kim, J.-Y., So, B.-J., Kim, T.-W., and Kwon, H.-H. (2016). "A development of trivariate drought frequency analysis approach using copula function." Journal of Korea Water Resources Association, Vol. 49, No. 10, pp. 823-833. https://doi.org/10.3741/JKWRA.2016.49.10.823
  8. Kim, Y.-O, Lee, J.-K., and Richard, N. P. (2012). "A drought outlook study in Korea." Hydrological Sciences Journal, Vol. 57, No. 6, pp. 1141-1153. https://doi.org/10.1080/02626667.2012.702212
  9. KMA (2016). 2015 The abnormal climate report. Korea Meteorological Administration.
  10. K-water (2005). Development of the monitoring system for the drought management.
  11. Kwon, H. J., and Kim, S. J. (2006). "Evaluation of semi-distributed hydrological drought using SWSI (Surface Water Supply Index)." Journal of the Korean Society of Agricultural Engineers, Vol. 48, No. 2, pp. 37-43. https://doi.org/10.5389/KSAE.2006.48.2.037
  12. Kwon, H. J., Park, H. J., Hong, D. O., and Kim, S. J. (2006). "A study on semi-distributed hydrologic drought assessment modifying SWSI." Journal of Korea Water Resources Association, Vol. 39, No. 8, pp. 645-658. https://doi.org/10.3741/JKWRA.2006.39.8.645
  13. Lee, B.-R., Sung, J. H., and Chung, E.-S. (2015). "Comparison of meteorological drought and hydrological drought index." Journal of Korea Water Resources Association, Vol. 48, No. 1, pp. 69-78. https://doi.org/10.3741/JKWRA.2015.48.1.69
  14. Matera, A., Fontana, G., and Marletto, V. (2007). "Use of a new agricultural drought index within a regional drought observatory." In Methods and Tools for Drought Analysis and Management. Edited by G. Rossi. Springer, Dordrecht, The Netherlands. pp. 103-124.
  15. NEMA (2009). Performance report for the progress to overcome drought. National Emergency Management Agency.
  16. Park, M. J., Shin, H. J., Choi, Y. D., Park, J. Y., and Kim, S. J. (2011). "Developing of a hydrological drought index considering water availability." Joournal of the Korean Society of Agricultural Engineers, Vol. 35, No. 6, pp. 165-170.
  17. Seo, H. D., Jeong, S. M., Kim, S. J., and Lee, J. H. (2008). "A study on the optimal water supply using virtual drought exercise with hydrological drought index." Journal of Korea Water Resources Association, Vol. 41, No. 10, pp. 1045-1058. https://doi.org/10.3741/JKWRA.2008.41.10.1045
  18. Shannon, C. E., (1948). "A mathematical theory of communication." Bell System Technical Journal, Vol. 27, pp. 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  19. Shukla, S., and Wood, A. W. (2008). "Use of a standardized runoff index for characterizing hydrologic dought." Geophysical Research Letters, Vol. 35, No. 2, L02405. https://doi.org/10.1029/2007GL032487
  20. Tsakiris, G., and Vangelis, H. (2005). "Establishing a drought index incorporating evapotranspiration." European Water, Vol. 9, No. 10, pp. 3-11.
  21. Vasiliades, L., Loukas, A., and Liberis, N. (2011). "A water balance derived drought index for Pinios River Basin, Greece." Water Resources Management, Vol. 25, No. 4, pp. 1087-1101. https://doi.org/10.1007/s11269-010-9665-1
  22. Won, K. J., Chung, E.-S., Lee, B.-R., and Sung, J.-H. (2016). "Characteristics of the Han river basin drought using SPEI and RDI." Journal of Korea Water Resources Association, Vol. 49, No. 3, pp. 187-196. https://doi.org/10.3741/JKWRA.2016.49.3.187