• 제목/요약/키워드: Dirichlet problem

검색결과 175건 처리시간 0.021초

AT LEAST FOUR SOLUTIONS TO THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.197-210
    • /
    • 2009
  • We prove the existence of multiple solutions (${\xi},{\eta}$) for perturbations of the elliptic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}A{\xi}+g_1({\xi}+ 2{\eta})=s{\phi}_1+h\;in\;{\Omega},\\A{\xi}+g_2({\xi}+ 2{\eta})=s{\phi}_1+h\;in\;{\Omega},\end{array}$$ where $lim_{u{\rightarrow}{\infty}}\frac{gj(u)}{u}={\beta}_j$, $lim_{u{\rightarrow}-{\infty}}\frac{gj(u)}{u}={\alpha}_j$ are finite and the nonlinearity $g_1+2g_2$ crosses eigenvalues of A.

  • PDF

Semiparametric Bayesian multiple comparisons for Poisson Populations

  • Cho, Jang Sik;Kim, Dal Ho;Kang, Sang Gil
    • Communications for Statistical Applications and Methods
    • /
    • 제8권2호
    • /
    • pp.427-434
    • /
    • 2001
  • In this paper, we consider the nonparametric Bayesian approach to the multiple comparisons problem for I Poisson populations using Dirichlet process priors. We describe Gibbs sampling algorithm for calculating posterior probabilities for the hypotheses and calculate posterior probabilities for the hypotheses using Markov chain Monte Carlo. Also we provide a numerical example to illustrate the developed numerical technique.

  • PDF

CURVED DOMAIN APPROXIMATION IN DIRICHLET'S PROBLEM

  • Lee, Mi-Young;Choo, Sang-Mok;Chung, Sang-Kwon
    • 대한수학회지
    • /
    • 제40권6호
    • /
    • pp.1075-1083
    • /
    • 2003
  • The purpose of this paper is to investigate the piecewise wise polynomial approximation for the curved boundary. We analyze the error of an approximated solution due to this approximation and then compare the approximation errors for the cases of polygonal and piecewise polynomial approximations for the curved boundary. Based on the results of analysis, p-version numerical methods for solving Dirichlet's problems are applied to any smooth curved domain.

NOTE ON LOCAL ESTIMATES FOR WEAK SOLUTION OF BOUNDARY VALUE PROBLEM FOR SECOND ORDER PARABOLIC EQUATION

  • Choi, Jongkeun
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1123-1148
    • /
    • 2016
  • The aim of this note is to provide detailed proofs for local estimates near the boundary for weak solutions of second order parabolic equations in divergence form with time-dependent measurable coefficients subject to Neumann boundary condition. The corresponding parabolic equations with Dirichlet boundary condition are also considered.

EXISTENCE OF NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC SYSTEM

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.135-143
    • /
    • 2008
  • We investigate the existence of nontrivial solutions of the nonlinear biharmonic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}{\Delta}^2{\xi}+c{\Delta}{\xi}={\mu}h({\xi}+{\eta})\;in{\Omega},\\{\Delta}^2{\eta}+c{\Delta}{\eta}={\nu}h({\xi}+{\eta})\;in{\Omega},\end{array}$$ where $c{\in}R$ and ${\Delta}^2$ denote the biharmonic operator.

  • PDF

THE PROOF OF THE EXISTENCE OF THE THIRD SOLUTION OF A NONLINEAR BIHARMONIC EQUATION BY DEGREE THEORY

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.165-172
    • /
    • 2008
  • We investigate the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition,${\Delta}^2u+c{\Delta}u=bu^{+}+s$, in ­${\Omega}$, where $c{\in}R$ and ${\Delta}^2$ denotes the biharmonic operator. We show by degree theory that there exist at least three solutions of the problem.

  • PDF

UNIQUENESS AND MULTIPLICITY OF SOLUTIONS FOR THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제21권1호
    • /
    • pp.139-146
    • /
    • 2008
  • We investigate the uniqueness and multiplicity of solutions for the nonlinear elliptic system with Dirichlet boundary condition $$\{-{\Delta}u+g_1(u,v)=f_1(x){\text{ in }}{\Omega},\\-{\Delta}v+g_2(u,v)=f_2(x){\text{ in }}{\Omega},$$ where ${\Omega}$ is a bounded set in $R^n$ with smooth boundary ${\partial}{\Omega}$. Here $g_1$, $g_2$ are nonlinear functions of u, v and $f_1$, $f_2$ are source terms.

  • PDF