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THE EXISTENCE RESULT OF CERTAIN
SINGULAR BOUNDARY VALUE PROBLEM

KYOUNG-HEE KIM AND YONG-HOON LEE

ABSTRACT. We prove the existence of solution for a Dirichlet singular
boundary value problem. The proofs are based on the method of upper
and lower solutions.

1. Introduction

In this paper, we are concerned with a singular boundary value prob-
lem of the form:

(1) w(t) + st~ = q,
u(0) = 0 = u(1),

where s is a positive real parameter.

This problem is an example arising from the study of the structure
of diffusion flame near ignition. Choi [1] has shown that there exists
a positive real number s, such that (1,) has no solution for s > s, or
at least one solution for s < s,. He employed a shooting method to
prove this and gave some numerical results. According to the numerical
results, one may expect that there exists s, > 0 such that (15) has no
solution for s > s,, at least one solution for s = S0, and at least two
solutions for s < s,. But he has not been successful in showing this.

For the existence of multiple solutions, it is a routine procedure to
divide the set containing possible solutions into two or more sectors and
show the existence on each sector. Since a sector can be obtained by
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means of upper and lower solutions, it is interesting to consider upper
and lower solutions of problem (1,) for the multiplicity.

The purpose of this paper is to prove Choi’s result using the method
of upper and lower Solutions. It gives quite different proof from Choi
and furthermore extends his result as follows;

There exists s, > 0 such that (1,) has no solution for s > s, and at least
one solution for s < s,.

2. Methods of upper and lower solutions.

We present a theorem on upper and lower solutions for the singular
problem we are dealing with. Consider the problem

(2) w'(t) + f(t u(t)) =0,

u(0) = a, u(l) =b,
where f : D — R is a continuous function and D C (0,1] x R. A
solution u(-) of (2) means a function u € C([0,1], R)N C?((0,1],R) such

that (t,u(t)) € D for all t € (0,1] and u"(f) + f(t,u(t)) = 0 for all
t € (0,1] with ©(0) = @ and u(1) = b.

DEFINITION 1. a € C([0,1},R) N C%((0,1],R) is called a lower solu-

tion of (2) if (t,a(t)) € D for all t € (0,1] and

o'(t) + f(t,a(t)) >0, t € (0,1]

a(0) < a, a(l) <b.
8 € C([0,1],R) N C*((0,1],R) is called an upper solution of (2) if
(t,B8(t)) € D for all t € (0,1} and

B"(t) + f(t.5(1)) < 0, t € (0,1]

A(0) 2 a, B(1) 2.

We define the set D? = {(t,z) € (0,1] x R:aft) <z < 3(t)}. The
following theorem is a slight modification of Theorem 1 in Habets and
Zanolin [2]. This modification is straightforward to problem (1.) and
the proof can be done by obvious changes from [2].
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THEOREM 1. Let a, 3 be a lower and an upper solution for (2) such
that
(a1) a(t) < B(t) for all t € [0,1] and suppose that
(a2) D% c D,
assume also that there is a function h € C((0,1],R*) such that
(az) [f(t,z)| < h(t) for all (t,x) € DP and
(aq) fol sh(s)ds < oo.
Then (2) has at least one solution w(-) such that

at) <a(t) < B(t) for all te€|[0,1].

3. Main result

Let us consider the following nonlinear Dirichlet singular boundary
value problem

(1s) u”(t)-}—st—%e"(t) =0,
u(0) =0 = u(1),

where s > 0 is a real parameter. Qur aim is to prove that there exists
8o > 0 such that (1,) has no solution or at least one solution according
to s > s, or 5 < s, respectively. We first notice that every solution
u(t) of (1,) is convex upward on [0,1] and u(t) > 0 on (0,1), since
u''(t) = —st™3ev) < 0 on (0,1) and u(0) = 0 = u(1). We need some
lemmas for the result.

LEMMA 1. Consider

(3x) u"(t) + ke =,
u(0) = a, u(l) = b.

Let k > 0 and a,b > 0, then there exists k, > 0. independent of a and b
such that for k > k,, (3x) does not have a solution.
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PROOF. First of all, we want to show that there exists k > 0 such
that (3;) has no solution. Otherwise, we may suppose that (3x) has a
solution for arbitrary & > 0. So let k be an arbitrary positive real number
and u(t) be a solution of (3x) corresponding to k. Since u" < 0 on (0,1]
and if u attains its minimum on (0, 1) then it must be constant which is
not a solution of (3x), thus u attains its minimum at 0 and 1 and unique
maximum on (0,1). Let w(t,) = max,e[o,1) u(t) for some ¢, € (0,1) and
denote u, = u(t,). Multiplying both sides of (3x) by 2u’. We get

{(u')?} = —2ke*u’
Integrating from t, to t,

t
u'’(t) = —2k/ e*'(s)ds = ~2k[e*(V) - e®e).
t

o

Thus

u'(t) = i\/;k(ena — ex()),
For t < t,, u'(t) > 0, thus v/(t) = V/2k(eve — e*(®) and
du(t) —
V2k(eve — ev(¥))

Integrating from 0 to {,, we get

: _/“" du
T Ja 2k(e¥o —ev)

Similarly, for t > t,,u/(t) < 0 and we get

/“" du
1-t, = . .
b /2k(ete —e*)

Adding two equations

o du o du
V2k = — ——
-/(l /ellg — eu +A /euo — eu
< 2/ T du = 2/ __dv
- Jo Jete —e¢e* 1 vy/e% — v
1

2 dw 4u,

< .
e¥e Jijevo WVl —w  eve
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Thus k < 8u,?/e*. Since a function 822 /e* is bounded for all = € R*,
the above inequality implies that k is bounded. This contradicts to the
fact that k is arbitrary and thus there exists & > 0 such that (3z) has no
solution. Next we claim that if (3;) has no solution for some k > 0, then
(3&) has no solution for all & > k. Suppose that there exists &* > k such
that (3z+) has a solution then it is easy to check that 3(t), a solution of
(3x+) and a(t) the straight line connecting (0, a) and (1,b) are an upper
and a lower solution of (3;) respectively. Thus by Mawhin [3], (3;) has
a solution u(t) with a(t)} < u(t) < 4(¢). This is a contradiction and the
proof is done.

LEMMA 2. Let (3x) have a solution at k = k*, then there exists
M > 0, dependent of k* such that for every possible solution u of (3;)
for k* < k one has ||ul| . < M.

PROOF. Assume that {3+ ) has a solution for fixed &*. Let & be a real
number with k > &* and let v be a solution of (3x). Then by the proof
of Lemma 1, we get

E;"o

1
5 < T
Su,?  k*

where u, = max;g[g,y) u(t). The above inequality implies that wu, is
bounded above by, we say, M which is dependent of £* but indepen-
dent of k. Thus we get the conclusion.

LEMMA 3. Assume that (1,) has a solution at s = s*. Then there
exists R > (0 such that for each s with s > s* and each possible solution
u of (15), one has lJuflo < R.

ProOF. Let s* be fixed and s > s*. We want to show the following
fact first. If (1,) has a solution u(t), then the equation

v (1) + s = q,
y(ty) = wlty), y(1) =0, ¢ €(0,1)

also has a solution. Indeed, let u(#) be a solution of (1,), then

u''(t) + se* = s V(1 t_%) <0, tet,l].
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Thus u(t) is an upper solution. On the other hand, let a(f) be the
straight line connecting (ty,u(t;)) and (1,0) then

o' (t) + se™M > 0.

Thus a(t) is a lower solution. We also see that a(t) < u(t) for all t €
[t1,1]. Thus by Mawhin (3], the above equation has a solution. We now
prove this lemma by contradiction. Suppose that there exists a sequence
(sn) with s, > s* such that corresponding solution u., of (13n ) satisfies
[ltnlloo — co. Without loss of generality, we may assume un( ) — oo as
n — oo. Consider

(4n) y"

By the above argument, each (4,) has a solution y,(t). Moreover y,,(%) =
un(3) — oo as n — oo. This implies that ||yn|,, — o0 as n — o0 and
we get a contradiction to Lemma 2.

THEOREM 2. There exists s, > 0 such that (1,) has at least one
solution for 0 < s < s, and no solution for s > s,.

PROOF. First, we will find an upper and a lower solution of (1) for
certain s. Let s € (0,1] and consider

The solution is f(t) = 4(\/5 t). We will claim that 3(t) is an upper
solution of (1) for 0 < s . Since 0 < B(t) < 1 for any t € [0,1] and
s < %

seP <se< 1.

Thus
BU(t) + st™3ePM = 173 (5P 1) <0
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This shows that 3(¢) is the upper solution of (15). a(t) = 0 is obviously
the lower solution of (1,) and «(t) < B(t) for any t € [0,1]. Thus, by
Theorem 1, (1,) has a solution for 0 < s < -le- Second, for fixed s; > 0
assume that (1, ) has a solution then for arbitrary s € (0,51), (1) also
has a solution. Indeed, let 3(t) be a solution of (14, ), then

BU(1) 4 st™ 2P = (5 — 5T <,

Thus 3(t) is the upper solution of (1,) and obviously «(t) = 01s the lower
solution of (1,). Therefore (1,) has at least one solution for s € (0, s,).
Let s, = sup{s > 0:(1,} has at least one solution.}, then we may notice
by the above argument that s, > + with the possibility s, = oo. Third,
we claim that s, < co. We will show by contradiction. Assume that there
exists a sequence of parameters (s, ) with s, -+ oo such that each (1,,)
has a solution w,,. On the interval [ . 1], consider equation (4,,) again.
By the same argument as in the pmof of Lemma 3, (4,) has a solution
for all n. Since s, — oo. the above conclusion contradicts to Lemmmna 1.
Consequently 0 < s, < oo. Finally, we show the existence of solution
for (14) at s = s,. By the definition of s,, we may choose an increasing
sequence (sp) such that s, — s, and each (1,,) has a solution. Let
un be a solution of (1,,) then by Lemma 3 and Arzela-Ascoli Theorem,
(un) has a subsequence converging to v € C[0,1]. We claim that u is a
solution of (1,,). Now u is a solution of (1,) if and only if « satisfies

] P
—".s'/ G(f,r)r‘%&“(”a"r.
Jo

{ T(1—1t) for0< <t
Cr(f,T): - . ‘
f(l“"T) fort < r <1,

where

Since u, is a solution of (1.

(IR

s
up(t) = G tor)r T 2et T
[V}

By Lemma 3, there exists a constant B > 0 such that |[u,|] . < I, for
all n. Thus

wales

]G(f.T)T“%f‘“”(”} < ('RIGH,THT“% < effr(1 —r)r™
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Let h(1) = ®(1 — T)T'_%, then h € L'[0,1] and applying Lebesgue
Dominated Convergence Theorem, we get

1
u(t) = lim un(t) = s, / lim G(t, r)r~ et (dr
T2 0O o

n—oo

1
:so/ G(t,T)T—%e"(")d’r.
0

Therefore u is a solution of (1,,) and this completes the proof.
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