• 제목/요약/키워드: Direct-patterning

검색결과 151건 처리시간 0.031초

레이저를 이용한 차세대 평판 디스플레이 공정 (Laser Microfabrications for Next-Generation Flat Panel Display)

  • 김광열
    • 한국재료학회지
    • /
    • 제17권7호
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

Thin Film Transistor fabricated with CIS semiconductor nanoparticle

  • Kim, Bong-Jin;Kim, Hyung-Jun;Jung, Sung-Mok;Yoon, Tae-Sik;Kim, Yong-Sang;Choi, Young-Min;Ryu, Beyong-Hwan;Lee, Hyun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1494-1495
    • /
    • 2009
  • Thin Film Transistor(TFT) having CIS (CuInSe) semiconductor layer was fabricated and characterized. Heavily doped Si was used as a common gate electrode and PECVD Silicon nitride ($SiN_x$) was used as a gate dielectric material for the TFT. Source and drain electrodes were deposited on the $SiN_x$ layer and CIS layer was formed by a direct patterning method between source and drain electrodes. Nanoparticle of CIS material was used as the ink of the direct patterning method.

  • PDF

Application of Inkjet Technology in Flat Panel Display

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.913-918
    • /
    • 2005
  • It is expected that the inkjet technology offers prospect for reliable and low cost manufacturing of FPD (Flat Panel Display). This inkjet technology also offers a more simplified manufacturing process for various part of the FPD than conventional process. For example, recently the novel manufacturing processes of color filter (C/F) in LCD, or RGB patterning in OLED by inkjet printing method have been developed. This elaborates will be considered as the precious point of manufacturing process for the mass production of enlarged-display panel with a low price. On this point of view, we would like to review the status of inkjet technology in FPD, with some results on forming micro line by inkjet patterning of suspension type silver nano ink as below. We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

그라비아 인쇄를 위한 Laser Stream Patterning 개선 (Laser Stream Patterning Improvement for Gravure Printing)

  • 안태용;김한규;이동훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2001
  • The main method in micro-etching process, used in manufacturing semiconductors, electronic components, circuits, is Photo Masking method that exposes and develops on the photo-sensitivity solutions or films. This method enables one to process highly precisely, $\pm$0.03 mm in end line location area. But this has limits in a high speed / wide width process, difficulties in endless masking, and the problem of high price. We have developed the direct masking method to make use of Gravure printing, widely used in grocery packing sheet printing. We made cylinder tools to influence the masking quality by laser stream process. We have confirmed that the end line location accuracy in the line width of the product is improved from 0.12 mm to $\pm$0.07 mm level, after etching process.

  • PDF

펨토초 레이저를 이용한 미세 PR 패터닝 (Femtosecond Laser Lithography for Maskless PR Patterning)

  • 손익부;고명전;김영섭;노영철
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.36-40
    • /
    • 2009
  • Development of maskless lithography techniques can provide a potential solution for the photomask cost issue. Furthermore, it could open a market for small scale manufacturing applications. Since femtosecond lasers have been found suitable for processing of a wide range of materials with sub-micrometer resolution, it is attractive to use this technique for maskless lithography. As a femtosecond laser has recently been developed, both of high power and high photon density are easily obtained. The high photon density results in photopolymerization of photoresist whose absorption spectrum is shorter than that of the femtosecond laser. The maskless lithography using the two-photon absorption (TPA) makes micro structures. In this paper, we present a femtosecond laser direct write lithography for submicron PR patterning, which show great potential for future application.

패드 인쇄 기법을 이용하여 곡면상에 구현된 PEMS 디바이스 (Pad Printed PEMS Device Printed on a Curved Surface)

  • 이택민;최현철;노재호;김동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1087-1090
    • /
    • 2008
  • This paper presents the electro-luminescence (EL) display lamp which is patterned on a curved surface by the pad printing method. The printing methods, including the gravure, screen, flexo, inkjet, and pad printing, have an advantage of one-step direct patterning. However, in general, the printing and semi-conductor process, except pad printing method, cannot be applied for patterning on a curved surface. Thus, in this paper, we used pad printing method for patterning an EL display lamp on a curved surface. The EL display lamp consists of 5 layers: Bottom electrode; Dielectric layer; Phosphor; Transparent electrode; Bus electrode. Finally, we printed EL display lamp on a dish, which has a radius of curvature 80mm. The EL display lamp was driven at AC 200V of 1kHz.

  • PDF

자외선 레이저를 이용한 폴리머 박막 가공의 수치해석 (Numerical Analysis of UV Laser Patterning of Polymeric Thin-Film)

  • 오부국;이승기;송민규;김종원;홍순국
    • 한국레이저가공학회지
    • /
    • 제12권4호
    • /
    • pp.1-5
    • /
    • 2009
  • Conventional patterning based on wet-process for multi-layered film is a relatively complex and costly process though it is a necessary step for fabrication of TFT-LCD module. Recently, a direct pattering by laser has been studied because it is low cost and simple process compared to the wet process. In this work, the selective removal process of multi-layered film (polyimide/indium tin oxide/glass) is studied by modeling the thermal and mechanical behavior for multi-layered structure. Especially, the effects of thickness of polyimide layer are examined.

  • PDF

Laser Direct Patterning of Carbon Nanotube Film

  • 윤지욱;조성학;장원석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF