Journal of the Korean Society for Marine Environment & Energy
/
v.19
no.1
/
pp.18-24
/
2016
Mineral carbonation is a technology for permanently storing carbon dioxide by reacting with metal oxides containing calcium and magnesium. In this study, we used sea water and alkaline industrial by-product such as paper sludge ash (PSA) for the storage of carbon dioxide through direct carbonation. We found the optimum conditions of both sea water content (mixing ratio of sea water and PSA) and reaction time required in the direct carbonation through various experiments using sea water and PSA. In addition, we compared the amounts of carbon dioxide storage with the cases when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA. The amount of carbon dioxide storage was calculated by using both solid weight increase through the carbonation reaction and the contents of carbonate salts from thermal gravimetric analysis. PSA particle used in this study contained 67.2% of calcium. The optimum sea water content and reaction time in the carbonation reaction using sea water and PSA were 5 mL/g and 2 hours, respectively, under the conditions of 0.05 L/min flow rate of carbon dioxide injected at $25^{\circ}C$ and 1 atm. The amounts of carbon dioxide stored when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA were 113 and $101kg\;CO_2/(ton\;PSA)$, respectively. The solid obtained through the carbonation reaction using sea water and PSA was composed of mainly calcium carbonate in the form of calcite and a small amount of magnesium carbonate. The solid obtained by using ultra-pure water, also, was found to be carbonate salt in the form of calcite.
Proceedings of the Korean Institute of Building Construction Conference
/
2017.05a
/
pp.13-14
/
2017
In this paper, research for use possibility as silica source of waste concrete powder discharged from direct and indirect carbonation has progressed. For the research, properties on the extruding panel using waste concrete powder with high silica content is evaluated. As the results, compressive strength of specimen is increased 24% compared to control specimen when waste concrete powder replaced 50%, that is discharged from carbonation process, as silica source.
Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.
Mineral carbonation for the storage of carbon dioxide is a CCS option that provides an alternative for the more widely advocated method of geological storage in underground formation. Carbonation of magnesium- or calcium-based minerals, especially the carbonation of waste materials and industrial by-products is expanding, even though total amounts of the industrial waste are too small to substantially reduce the $CO_2$ emissions. The mineral carbonation was performed with steelmaking reduction slag as starting material. The steelmaking reduction slag dissolution experiments were conducted in the $H_2SO_4$ and $NH_4NO_3$ solution with concentration range of 0.3 to 1 M at $100^{\circ}C$ and $150^{\circ}C$. The hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at the same leaching temperature. The initial pH of the solution was adjusted to 12 and $CO_2$ partial pressure was 1MPa for the carbonation. The carbonation rate after extracting $Ca^^{2+}$ under $NH_4NO_3$ was higher than that under $H_2SO_4$ and the carbonation rates in 1M $NH_4NO_3$ solution at $150^{\circ}C$ was dramatically enhanced about 93%. In this condition well-faceted rhombohedral calcite, and rod or flower-shaped aragonite were appeared together in products. As the concentration of $H_2SO_4$ increased, the formation of gypsum was predominant and the carbonation rate decreased sharply. Therefore it is considered that the selection of the leaching solution which does not affect the starting material is important in the carbonation reaction.
Journal of Korean Society of Environmental Engineers
/
v.36
no.5
/
pp.342-351
/
2014
The present paper investigates the performance of direct wet mineral carbonation technology to fix carbon dioxide ($CO_2$) from relatively high $CO_2$ concentration feeding gas using wollastonite ($CaSiO_3$)-water (and 0.46 M acetic acid) suspension solution. To minimize the energy consumed on the process, the carbonation in this work is carried out at atmospheric pressure and slightly higher room temperature. As a result, carbon fixation is confirmed on the surface of $CaSiO_3$ after carbonation with wollastonite-water suspension solution and its amount is increased according to the $CO_2$ composition in the feeding gas. The leaching and carbonation ratio of wollastonite-water suspension system obtained from the carbonation with 50% of $CO_2$ composition feeding gas is 13.2% and 10.4%, respectively. On the other hand, the performance of wollastonite-acetic acid in the same condition is 63% for leaching and 1.39% for carbonation.
Recently, carbon capture and storage (CCS) techniques have been globally studied. This study was conducted to use waste cement powder as an efficient raw material of mineral carbonation for $CO_2$ sequestration. Direct aqueous carbonation experiment was conducted with injecting pure $CO_2$ gas (99.9%) to a reactor containing $200m{\ell}$ reacting solution and the pulverized cement paste (W:C = 6:4) having particle size less than 0.15 mm. The effects of two additives (NaCl, $MgCl_2$) in carbonation were analyzed. The characteristics of carbonate minerals and carbonation process according to the type of additives and pH change were carefully evaluated. pH of reacting solution was gradually decreased with injecting $CO_2$ gas. $Ca^{2+}$ ion concentration in $MgCl_2$ containing solution was continuously decreased. In none $MgCl_2$ solution, however, $Ca^{2+}$ ion concentration was increased again as pH decreased. This is probably due to the dissolution of newly formed carbonate mineral in low pH solution. XRD analysis indicates that calcite is dominant carbonate mineral in none $MgCl_2$ solution whereas aragonite is dominant in $MgCl_2$ containing solution. Unstable vaterite formed in early stage of experiment was transformed to well crystallized calcite with decreasing pH in the absence of $MgCl_2$ additives. In the presence of $MgCl_2$ additives, the content of aragonite was increased with decreasing pH whereas the content of calite was decreased.
Magnesium silicate minerals such as serpentine [Mg3Si2O5(OH)4] have a high potential for the sequestration of CO2; thus, their reactivity toward dissolution under CO2-free and CO2-containing conditions in acidic solvents is a critical process with respect to their carbonation reactions. To examine the carbonation efficiency and dissolution mechanism of serpentine, hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at 100 and 150℃. The serpentine dissolution experiments were conducted in H2SO4 solution with concentration range of 0.3-1 M and at a CO2 partial pressure of 3 MPa. The initial pH of the solution was adjusted to 13 for the carbonation process. Under CO2-free and CO2-containing conditions, the carbonation efficiency increased in proportion to the concentration of H2SO4 and the reaction temperature. The leaching rate under CO2-containing conditions was higher than that under CO2-free conditions. This suggests that shows the presence of CO2 affects the carbonation reaction. The leaching and carbonation efficiencies at 150℃ in 1 M H2SO4 solution under CO2-containing conditions were 85 and 84%, respectively. The dissolution rate of Mg was higher than that of Si, such that the Mg : Si ratio of the reacted serpentine decreased from the inner part (approximately 1.5) to the outer part (less than 0.1). The resultant silica-rich layer of the reaction product ultimately changed through the Mg-depleted skeletal phase and the pseudo-serpentine phase to the amorphous silica phase. A passivating silica layer was not observed on the outer surface of the reacted serpentine.
Kim, Kyeongtae;Latief, Ilham Abdul;Kim, Danu;Kim, Seonhee;Lee, Minhee
Economic and Environmental Geology
/
v.55
no.4
/
pp.377-388
/
2022
Laboratory-scale experiments were performed to identify the As removal mechanism of the residual slag generated after the mineral carbonation process. The residual slags were manufactured from the steelmaking slag (blast oxygen furnace slag: BOF) through direct and indirect carbonation process. RDBOF (residual BOF after the direct carbonation) and RIBOF (residual BOF after the indirect carbonation) showed different physicochemical-structural characteristics compared with raw BOF such as chemical-mineralogical properties, the pH level of leachate and forming micropores on the surface of the slag. In batch experiment, 0.1 g of residual slag was added to 10 mL of As-solution (initial concentration: 203.6 mg/L) titrated at various pH levels. The RDBOF showed 99.3% of As removal efficiency at initial pH 1, while it sharply decreased with the increase of initial pH. As the initial pH of solution decreased, the dissolution of carbonate minerals covering the surface was accelerated, increasing the exposed area of Fe-oxide and promoting the adsorption of As-oxyanions on the RDBOF surface. Whereas, the As removal efficiency of RIBOF increased with the increase of initial pH levels, and it reached up to 70% at initial pH 10. Considering the PZC (point of zero charge) of the RIBOF (pH 4.5), it was hardly expected that the electrical adsorption of As-oxyanion on surface of the RIBOF at initial pH of 4-10. Nevertheless it was observed that As-oxyanion was linked to the Fe-oxide on the RIBOF surface by the cation bridge effect of divalent cations such as Ca2+, Mn2+, and Fe2+. The surface of RIBOF became stronger negatively charged, the cation bridge effect was more strictly enforced, and more As can be fixed on the RIBOF surface. However, the Ca-products start to precipitate on the surface at pH 10-11 or higher and they even prevent the surface adsorption of As-oxyanion by Fe-oxide. The TCLP test was performed to evaluate the stability of As fixed on the surface of the residual slag after the batch experiment. Results supported that RDBOF and RIBOF firmly fixed As over the wide pH levels, by considering their As desorption rate of less than 2%. From the results of this study, it was proved that both residual slags can be used as an eco-friendly and low-cost As remover with high As removal efficiency and high stability and they also overcome the pH increase in solution, which is the disadvantage of existing steelmaking slag as an As remover.
Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Keum-Dan Park
Journal of the Korean Crystal Growth and Crystal Technology
/
v.34
no.3
/
pp.86-91
/
2024
In this study, the characteristics of mortar using carbondioxide conversion capture materials (CCMs), fabricated by reacting CO2 with desulfurization gypsum (DG) by-produced from a oil refinery, as a cement mixture. Based on the chemical component and particle size analysis results, it estimated that desulfurized gypsum reacted with carbon dioxide to produce carbonate crystals such as CaCO3. Using CCMs as a cement mixture, physical property and durability analysis were conducted by measuring such as workability, compressive strength, compressive strength ratio after freezing-thawing and accelerated carbonation depth. The experimental results showed that as the content of the admixture increased, workability and compressive strength characteristics decreased. Compressive strength after freezing-thawing and accelerated carbonation depth also showed similar characteristics to the physical property measurement results. In addition, compared to desulfurized gypsum, using CCMs showed better physical properties and durability. This was assumed to be due to differences in the crystal phases of the mixed materials such as free-CaO and CaCO3.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.