Browse > Article
http://dx.doi.org/10.9719/EEG.2020.53.1.1

Effect of Carbon Dioxide Pressure on Mineral Carbonation in Acidic Solutions  

Ryu, Kyoung Won (Korea University of Technology and Education)
Hong, Seok Jin (Department of Earth and Environmental Sciences, College of Natural Sciences, Chungbuk National University)
Choi, Sang Hoon (Department of Earth and Environmental Sciences, College of Natural Sciences, Chungbuk National University)
Publication Information
Economic and Environmental Geology / v.53, no.1, 2020 , pp. 1-9 More about this Journal
Abstract
Magnesium silicate minerals such as serpentine [Mg3Si2O5(OH)4] have a high potential for the sequestration of CO2; thus, their reactivity toward dissolution under CO2-free and CO2-containing conditions in acidic solvents is a critical process with respect to their carbonation reactions. To examine the carbonation efficiency and dissolution mechanism of serpentine, hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at 100 and 150℃. The serpentine dissolution experiments were conducted in H2SO4 solution with concentration range of 0.3-1 M and at a CO2 partial pressure of 3 MPa. The initial pH of the solution was adjusted to 13 for the carbonation process. Under CO2-free and CO2-containing conditions, the carbonation efficiency increased in proportion to the concentration of H2SO4 and the reaction temperature. The leaching rate under CO2-containing conditions was higher than that under CO2-free conditions. This suggests that shows the presence of CO2 affects the carbonation reaction. The leaching and carbonation efficiencies at 150℃ in 1 M H2SO4 solution under CO2-containing conditions were 85 and 84%, respectively. The dissolution rate of Mg was higher than that of Si, such that the Mg : Si ratio of the reacted serpentine decreased from the inner part (approximately 1.5) to the outer part (less than 0.1). The resultant silica-rich layer of the reaction product ultimately changed through the Mg-depleted skeletal phase and the pseudo-serpentine phase to the amorphous silica phase. A passivating silica layer was not observed on the outer surface of the reacted serpentine.
Keywords
serpentine; carbon dioxide; carbonation; dissolution rate; magnesite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alexander, G., Maroto-Valer, M.M. & Gafarova-Aksoy, P. (2007) Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. Fuel, v.86, p.273-281.   DOI
2 Baek, J., Jo. Y., Lee, J., Kwon, N., Kim, Y., Choi, S., Kim, S. and Roh, Y. (2016) Silica and Iron oxide recovery and mineral carbonation from serpentine minerals using acid dissolution and pH swing processes, The Korean Society of Economic Environmental Geology, v.49, p.13-22.   DOI
3 Bearat, H., McKelvy, M.J., Chizmeshya, A.V.G., Gormley, D., Nunez, R., Carpenter, R.W., Squires, K. & Wolf, G.H. (2006) Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation. Environmental Science & Technology, v.40, p.4802-4808.   DOI
4 Daval, D., Martinez, I., Corvisier, J., Findling, N., Goffe, B. & Guyot, F. (2009a) Carbonation of ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling. Chemical Geology, v.265, p.63-78.   DOI
5 Berg, A. & Banwart, S.A. (2000) Carbon dioxide mediated dissolution of ca-feldspar: Implications for silicate weathering. Chemical Geology, v.163, p.25-42.   DOI
6 Blencoe, J.G., Palmer, D.A., Anovitz, L.M. & Beard, J.S. (2012) Carbonation of metal silicates for long-term $CO_2$ sequestration. Pp.,Google Patents.
7 Carroll, S.A. & Knauss, K.G. (2005) Dependence of labradorite dissolution kinetics on co2(aq), al(aq), and temperature. Chemical Geology, v.217, p.213-225.   DOI
8 Daval, D., Martinez, I., Guigner, J.M., Hellmann, R., Corvisier, J., Findling, N., Dominici, C., Goffe, B. & Guyot, F. (2009b) Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations. American Mineralogist, v.94, p.1707-1726.   DOI
9 Daval, D., Sissmann, O., Menguy, N., Saldi, G.D., Guyot, F., Martinez, I., Corvisier, J., Garcia, B., Machouk, I., Knauss, K.G. & Hellmann, R. (2011) Influence of amorphous silica layer formation on the dissolution rate of olivine at $90^{\circ}C$ and elevated pco2. Chemical Geology, v.284, p.193-209.   DOI
10 Gerdemann, S.J., O'Connor, W.K., Dahlin, D.C., Penner, L.R. & Rush, H. (2007) Ex situ aqueous mineral carbonation. Environmental Science & Technology, v.41, p.2587-2593.   DOI
11 IPCC. (2005) Carbon dioxide capture and storage. Pp., Cambridge University Press, Cambridge, United Kingdom and New York (NY), USA, Intergoverment panel on climate change.
12 Golubev, S.V., Pokrovsky, O.S. & Schott, J. (2005) Experimental determination of the effect of dissolved co2 on the dissolution kinetics of mg and ca silicates at $25^{\circ}C$. Chemical Geology, v.217, p.227-238.   DOI
13 Hanchen, M., Prigiobbe, V., Storti, G., Seward, T.M. & Mazzotti, M. (2006) Dissolution kinetics of fosteritic olivine at $90-150^{\circ}C$ including effects of the presence of $co_2$. Geochimica et Cosmochimica Acta, v.70, p.4403-4416.   DOI
14 Hellmann, R. (1995) The albite-water system: Part ii. The time-evolution of the stoichiometry of dissolution as a function of ph at 100, 200, and $300^{\circ}C$. Geochimica et Cosmochimica Acta, v.59, p.1669-1697.   DOI
15 Jarvis, K., Carpenter, R.W., Windman, T., Kim, Y., Nunez, R. & Alawneh, F. (2009) Reaction mechanisms for enhancing mineral sequestration of co2. Environmental Science & Technology, v.43, p.6314-6319.   DOI
16 Jonckbloedt, R.C.L. (1998) Olivine dissolution in sulphuric acid at elevated temperatures - implications for the olivine process, an alternative waste acid neutralizing process. Journal of Geochemical Exploration, v.62, p.337-346.   DOI
17 Kakizawa, M., Yamasaki, A. & Yanagisawa, Y. (2001) A new $co_2$ disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy, v.26, p.341-354.   DOI
18 Knaapen, A.M., Borm, P.J.A., Albrecht, C. & Schins, R.P.F. (2004) Inhaled particles and lung cancer. Part a: Mechanisms. International Journal of Cancer, v.109, p.799-809.   DOI
19 Wagner, J.C., Berry, G. & Pooley, F.D. (1980) Carcinogenesis and mineral fibres. British Medical Bulletin, v.36, p.53-56.   DOI
20 Park, A.H.A. & Fan, L.S. (2004) Co2 mineral sequestration: Physically activated dissolution of serpentine and ph swing process. Chemical Engineering Science, v.59, p.5241-5247.   DOI
21 Wang, X. & Maroto-Valer, M.M. (2011) Dissolution of serpentine using recyclable ammonium salts for $CO_2$ mineral carbonation. Fuel,v. 90, p.1229-1237.   DOI
22 Maroto-Valer, M.M., Fauth, D.J., Kuchta, M.E., Zhang, Y. & Andresen, J.M. (2005) Activation of magnesium rich minerals as carbonation feedstock materials for $co_2$ sequestration. Fuel Processing Technology, v.86, p.1627-1645.   DOI
23 Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K. & Yamada, K. (2008) Development of a new ph-swing $co_2$ mineralization process with a recyclable reaction solution. Energy, v.33, p.776-784.   DOI
24 Kosuge, K., Shimada, K. & Tsunashima, A. (1995) Micropore formation by acid treatment of antigorite. Chemistry of Materials, v.7, p.2241-2246.   DOI
25 Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, B.L. & Sharp, D.H. (1995) Carbon dioxide disposal in carbonate minerals. Energy, v.20, p.1153-1170.   DOI
26 McKelvy, M.J., Chizmeshya, A.V.G., Diefenbacher, J., Bearat, H. & Wolf, G. (2004) Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions. Environmental Science & Technology, v.38, p.6897-6903.   DOI
27 Mossman, B.T. (1993) Health effects of mineral dusts. Pp. 513. Mineralogical Society of America,, Washington, DC.
28 O'Connor, W.K., Dahlin, D.C., Rush, G.E., Dahlin, C.L. & Collins, W.K. (2002) Carbon dioxide sequestration by direct mineral carbonation: Process mineralogy of feed and products. Minerals and Metallurgical Processing, v.19, p.95-101.
29 O'Connor, W.K., Dahlin, D.C., Rush, G.E., Gerdemann, S.J., Penner, L.R. & Nilsen, D.N. (2005) Auqeous mineral carbonation - mineral availability, pretreatment, reaction parametrics, and process studies Pp.,US DOE, National Energy Technology Laboratory
30 Park, A.H.A., Jadhav, R. & Fan, L.S. (2003) $Co_2$ mineral sequestration: Chemically enhanced aqueous carbonation of serpentine. Canadian Journal of Chemical Engineering, v.81, p.885-890.   DOI
31 Pokrovsky, O.S. & Schott, J. (2000) Forsterite surface composition in aqueous solutions: A combined potentiometric, electrokinetic, and spectroscopic approach. Geochimica et Cosmochimica Acta, v.64, p.3299-3312.   DOI
32 Prigiobbe, V., Costa, G., Baciocchi, R., Hanchen, M. & Mazzotti, M. (2009) The effect of co2 and salinity on olivine dissolution kinetics at 120 {ring operator} c. Chemical Engineering Science, v.64, p.3510-3515.   DOI
33 Ryu K.W and Choi, S.H. (2017) The Mineral carbonation using steelmaking reduction slag, The Korean Society of Economic Environmental Geology, v.50, p27-34.   DOI
34 Ryu, K.W., Jo, H., Choi, S.H., Chae, S.C. & Jang, Y.-N. (2016) Changes in mineral assemblages during serpentine carbonation. Applied Clay Science, v.134, p.62-67.   DOI
35 Sanna, A., Wang, X., Lacinska, A., Styles, M., Paulson, T. & Maroto-Valer, M.M. (2013) Enhancing mg extraction from lizardite-rich serpentine for co2 mineral sequestration. Minerals Engineering, v.49, p.135-144.   DOI
36 Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C.J. & Zevenhoven, R. (2007) Dissolution of natural serpentinite in mineral and organic acids. International Journal of Mineral Processing, v.83, p.36-46.   DOI