DOI QR코드

DOI QR Code

Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash

해수와 제지슬러지소각재의 광물탄산화 반응을 이용한 이산화탄소 저장 연구

  • Kim, Dami (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Kim, Myoung-jin (Department of Environmental Engineering, Korea Maritime and Ocean University)
  • 김다미 (한국해양대학교 해양과학기술융합학과) ;
  • 김명진 (한국해양대학교 환경공학과)
  • Received : 2015.10.27
  • Accepted : 2015.12.07
  • Published : 2016.02.25

Abstract

Mineral carbonation is a technology for permanently storing carbon dioxide by reacting with metal oxides containing calcium and magnesium. In this study, we used sea water and alkaline industrial by-product such as paper sludge ash (PSA) for the storage of carbon dioxide through direct carbonation. We found the optimum conditions of both sea water content (mixing ratio of sea water and PSA) and reaction time required in the direct carbonation through various experiments using sea water and PSA. In addition, we compared the amounts of carbon dioxide storage with the cases when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA. The amount of carbon dioxide storage was calculated by using both solid weight increase through the carbonation reaction and the contents of carbonate salts from thermal gravimetric analysis. PSA particle used in this study contained 67.2% of calcium. The optimum sea water content and reaction time in the carbonation reaction using sea water and PSA were 5 mL/g and 2 hours, respectively, under the conditions of 0.05 L/min flow rate of carbon dioxide injected at $25^{\circ}C$ and 1 atm. The amounts of carbon dioxide stored when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA were 113 and $101kg\;CO_2/(ton\;PSA)$, respectively. The solid obtained through the carbonation reaction using sea water and PSA was composed of mainly calcium carbonate in the form of calcite and a small amount of magnesium carbonate. The solid obtained by using ultra-pure water, also, was found to be carbonate salt in the form of calcite.

광물탄산화는 이산화탄소를 칼슘, 마그네슘 등을 함유한 금속산화물과 반응시켜 영구적으로 저장하는 기술이다. 본 연구에서는 직접탄산화 방법으로 이산화탄소를 저장하기 위해 해수와 알칼리성 산업부산물인 제지슬러지소각재(PSA)를 사용하였다. 다양한 실험을 통해 해수와 PSA를 이용한 직접탄산화 반응의 최적 용매의 양(해수와 PSA의 혼합비)과 반응시간을 찾았고, PSA를 이용한 직접탄산화 반응에 해수와 초순수를 각각 용매로 사용했을 때의 이산화탄소 저장량을 비교하였다. 이산화탄소 저장량은 탄산화반응 후 고체증가량과 열중량분석 결과를 이용해서 계산하였다. 실험에 사용한 PSA는 미세하고 67.2%의 칼슘을 포함하였다. $25^{\circ}C$, 1기압에서 해수를 PSA와 혼합하여 이산화탄소를 0.05 L/min 유량으로 주입하는 탄산화반응의 최적 용매의 양과 반응시간은 각각 5 mL/g, 2시간이었다. 해수와 초순수를 용매로 사용해서 PSA와 각각 혼합한 다음 탄산화했을 때, 이산화탄소 저장량은 각각 113, $101kg\;CO^2/(ton\;PSA)$이었다. 해수를 사용하여 탄산화한 고체는 대부분 calcite 형태의 탄산칼슘과 소량의 탄산마그네슘으로 구성되어있었고, 초순수를 사용했을 때의 고체도 calcite 형태의 탄산염임을 확인하였다.

Keywords

References

  1. Chang, E.E., Chen, C.H., Chen, Y.H., Pan, S.Y. and Chiang, P. C., 2011, "Performance evaluation for carbonation of steel-making slags in a slurry reactor", J. Hazard. Mater., Vol. 186, 558-564. https://doi.org/10.1016/j.jhazmat.2010.11.038
  2. Druckenmiller, M.L. and Maroto-Valer, M.M., 2005, "Carbon sequestration using brine of adjusted pH to form mineral carbonates", Fuel Process. Technol., Vol. 86, 1599-1614. https://doi.org/10.1016/j.fuproc.2005.01.007
  3. Gunning, P.J., Hills, C.D. and Carey, P.J., 2010, "Accelerated carbonation treatment of industrial wastes", Waste Manage., Vol. 30, 1081-1090. https://doi.org/10.1016/j.wasman.2010.01.005
  4. Han, K.W., Rhee, C.H. and Chun, H.D., 2011, "Feasibility of mineral carbonation technology as a $CO_2$ storage measure considering domestic industrial environment", Korean Chem. Eng. Res., Vol. 49, No. 2, 137-150. https://doi.org/10.9713/kcer.2011.49.2.137
  5. Huntzinger, D.N., Gierke, J.S., Sutter, L.L., Kawatra, S.K. and Eisele, T.C., 2009, "Mineral carbonation for carbon sequestration in cement kiln dust from waste piles", J. Hazard. Mater., Vol. 168, 31-37. https://doi.org/10.1016/j.jhazmat.2009.01.122
  6. IPCC, 2007, "Climate change 2007 mitigation of climate change, contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change", in Metz B, Davidson O, Bosch P, Dave R, Meyer L (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York(NY), USA.
  7. Kim, D.M. and Kim, M.J., 2015, "Mineral carbonation using industrial waste: review", J. of Korea Society of Waste Management, Vol. 32, No. 4, 317-328. https://doi.org/10.9786/kswm.2015.32.4.317
  8. Kim, J.M., 2009, "Status and prospect of carbon dioxide storage technologies", KIC news, Vol. 12, No. 2, 31-41.
  9. Leggett, C.J. and Ra, O.L., 2015, "Complexation of calcium and magnesium with glutarimidedioxime: Implications for the extraction of uranium from seawater", Polyhedron, Vol. 95, 54-59. https://doi.org/10.1016/j.poly.2015.04.004
  10. Perez-Lopez, R., Montes-Hernandez, G., Nieto, J.M., Renard, F. and Charlet, L., 2008, "Carbonation of alkaline paper mill waste to reduce $CO_2$ greenhouse gas emission into the atmosphere", Appl. Geochem., Vol. 23, 2292-2300. https://doi.org/10.1016/j.apgeochem.2008.04.016
  11. Soong, Y., Goodman, A.L., McCarthy-Jones, J.R. and Baltrus, J.P., 2004, "Experimental and simulation studies on mineral trapping of $CO_2$ with brine", Energ. Convers. Manage., Vol. 45, 1845-1859. https://doi.org/10.1016/j.enconman.2003.09.029
  12. Soong, Y., Fauth, D.L., Howard, B.H., Jones, J.R., Harrison, D.K., Goodman, A.L., Gray, M.L. and Frommell, E.A., 2006, "$CO_2$ sequestration with brine solution and fly ashes", Energ. Convers. Manage., Vol. 47, 1676-1685. https://doi.org/10.1016/j.enconman.2005.10.021
  13. Teramura, S., Isu N. and Inagaki, K., 2000, "New building material from waste concrete by carbonation", J. Mater. Civil Eng., Vol. 12, 288-293. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:4(288)
  14. Ukwattage, N.L., Ranjith, P.G. and Wang, S.H., 2013, "Investigation of the potential of coal combustion fly ash for mineral sequestration of $CO_2$ by accelerated carbonation", Energy, Vol. 52, 230-236. https://doi.org/10.1016/j.energy.2012.12.048
  15. Waters, J.F. and Millero, F.J., 2013, "The free proton concentration scal for seawater pH", Mar. chem., Vol. 149, 8-22. https://doi.org/10.1016/j.marchem.2012.11.003