• 제목/요약/키워드: Direct current magnetron sputtering

검색결과 59건 처리시간 0.03초

고온용 태양 선택흡수막의 제작 (Deposition of Solar Selective Coatings for High Temperature Applications)

  • 이길동
    • 한국태양에너지학회 논문집
    • /
    • 제28권1호
    • /
    • pp.33-42
    • /
    • 2008
  • Zr-O ($Zr-ZrO_2$) cermets solar selective coatings with a double cermets layer film structure were prepared using a DC (direct current) magnetron sputtering method. The typical film structure from surface to bottom substrate were an $Al_2O_3$ anti-reflection layer on a double Zr-O cermets layer on an Al metal infrared reflection layer. Optical properties of optimized Zr-O cermets solar selective coating had an absorptance of ${\alpha}\;=\;0.95$ and thermal omittance of ${\epsilon}\;=\;0.10\;(100^{\circ}C)$. The absorbing layer of Zr-O cermets coatings on glass and silicon substrate was identified as being amorphous by using XRD. AFM showed that ZF-O cermets layers were very smooth and their surface roughness were approximately $0.1{\sim}0.2 nm$. The chemical analysis of the cermets coatings were determined by using XPS. Chemical shift of photoelectron binding energy was occurred due to the change of Zr-O cermets coating structure deposited with increase in oxygen flow rate. The result of thermal stability test showed that the Zr-O cermets solar selective coating was stable for use at temperature below $350^{\circ}C$.

Morphological Structural and Electrical Properties of DC Magnetron Sputtered Mo Thin Films for Solar Cell Application

  • Fan, Rong;Jung, Sung-Hee;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.389-389
    • /
    • 2012
  • Molybdenum is one of the most important materials used as a back ohmic contact for $Cu(In,Ga)(Se,S)_2$ (CIGS) solar cells because it has good electrical properties as an inert and mechanically durable substrate during the absorber film growth. Sputter deposition is the common deposition process for Mo thin films. Molybdenum thin films were deposited on soda lime glass (SLG) substrates using direct-current planar magnetron sputtering technique. The outdiffusion of Na from the SLG through the Mo film to the CIGS based solar cell, also plays an important role in enhancing the device electrical properties and its performance. The structure, surface morphology and electrical characteristics of Mo thin films are generally dependent on deposition parameters such as DC power, pressure, distance between target and substrate, and deposition temperature. The aim of the present study is to show the resistivity of Mo layers, their crystallinity and morphologies, which are influenced by the substrate temperature. The thickness of Mo films is measured by Tencor-P1 profiler. The crystal structures are analyzed using X-ray diffraction (XRD: X'Pert MPD PRO / Philips). The resistivity of Mo thin films was measured by Hall effect measurement system (HMS-3000/0.55T). The surface morphology and grain shape of the films were examined by field emission scanning electron microscopy (FESEM: Hitachi S-4300). The chemical composition of the films was obtained by the energy dispersive X-ray spectroscopy (EDX). Finally the optimum substrate temperature as well as deposition conditions for Mo thin films will be developed.

  • PDF

디스플레이용 ITO 전극의 동작 압력에 따른 특성 연구 (A Study of Characteristic based on Working Pressure of ITO Electrode for Display)

  • 김해문;박형준
    • 전기전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.392-397
    • /
    • 2016
  • 본 논문에서는 투명 전극용 ITO(Indium Tin Oxide) 박막의 성막 조건을 알아내기 위하여 DC(Direct Current) 마그네트론 스퍼터를 사용해 증착된 ITO 박막의 특성을 분석하였다. 실험 조건은 1~3[mTorr] 분위기압으로 조절하고 인가전압은 260~330[V]로 10[V]씩 스텝을 주어 실험을 진행하였다. 증착된 박막의 투과율, 굴절률 및 표면과 단면 형상을 자외선-가시광선 분광광도계, 타원편광분석기와 주사전자현미경으로 측정하였다. ITO 성막 조건 1~2[mTorr] 분위기압에서 300[V] 정도의 전압이 투과율이 90[%] 이상으로 우수하고 굴절률이 2이상 이였다. 따라서 높은 투명 전도성 전극을 만들기에 적절한 조건임을 확인하였다.

Ag 중간층 두께에 따른 TiO2/Ag/TiO2 박막의 광학적 특성 변화 (Influence of Ag Thickness on the Properties of TiO2/Ag/TiO2 Trilayer Films)

  • 김소영;전재현;공태경;김선경;최동혁;손동일;김대일
    • 열처리공학회지
    • /
    • 제28권2호
    • /
    • pp.63-67
    • /
    • 2015
  • $TiO_2/Ag/TiO_2$ trilayer films were deposited with radio frequency (RF) and direct current (DC) magnetron sputtering onto the glass substrate to consider the influence of Ag interlayer on the optical properties of the films. The thickness of $TiO_2$ films was kept at 24 nm, while the thickness of Ag interlayer was varied as 5, 10, 15, and 20 nm. As-deposited $TiO_2$ single layer films show the optical transmittance of 66.7% in the visible wave-length region and the optical reflectance of 16.5%, while the $TiO_2$ films with a 15 nm thick Ag interlayer show the enhanced optical transmittance of 80.2% and optical reflectance of 77.8%. The carrier concentration was also influenced by Ag interlayer. The highest carrier concentration of $1.01{\times}10^{23}cm^{-3}$ was observed for a 15 nm thick Ag interlayer in $TiO_2/Ag/TiO_2$ films. The observed result means that an optimized Ag interlayer in $TiO_2/Ag/TiO_2$ films enhanced the structural and optical properties of the films.

Development of High Entropy Alloy Film using Magnetron Sputtering

  • Kim, Young Seok;Lim, Ki Seong;Kim, Ki Buem
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.129-129
    • /
    • 2018
  • Hard coating application is effective way of cutting tool for hard-to-machine materials such as Inconel, Ti and composite materials focused on high-tech industries which are widely employed in aerospace, automobile and the medical device industry also Information Technology. In cutting tool for hard-to-machine materials, high hardness is one of necessary condition along with high temperature stability and wear resistance. In recent years, high-entropy alloys (HEAs) which consist of five or more principal elements having an equi-atomic percentage were reported by Yeh. The main features of novel HEAs reveal thermodynamically stable, high strength, corrosion resistance and wear resistance by four characteristic features called high entropy, sluggish diffusion, several-lattice distortion and cocktail effect. It can be possible to significantly extend the field of application such as cutting tool for difficult-to-machine materials in extreme conditions. Base on this understanding, surface coatings using HEAs more recently have been developed with considerable interest due to their useful properties such as high hardness and phase transformation stability of high temperature. In present study, the nanocomposite coating layers with high hardness on WC substrate are investigated using high entropy alloy target made a powder metallurgy. Among the many surface coating methods, reactive magnetron sputtering is considered to be a proper process because of homogeneity of microstructure, improvement of productivity and simplicity of independent control for several critical deposition parameters. The N2 is applied to reactive gas to make nitride system with transition metals which is much harder than only alloy systems. The acceleration voltage from 100W to 300W is controlled by direct current power with various deposition times. The coating layers are systemically investigated by structural identification (XRD), evaluation of microstructure (FE-SEM, TEM) and mechanical properties (Nano-indenter).

  • PDF

층간금속층에 따른 ITO 박막의 메탄올 검출민감도 개선 효과 (Effect of Intermediate Metal on the Methanol Gas Sensitivity of ITO Thin Films)

  • 이학민;허성보;공영민;김대일
    • 한국진공학회지
    • /
    • 제20권3호
    • /
    • pp.195-199
    • /
    • 2011
  • RF 마그네트론 스퍼터와 DC 마그네트론 스퍼터를 병행하여 ITO/Au/ITO, ITO/Cu/ITO, 그리고 ITO/Ni/ITO 박막을 유리기판 위에 증착하였다. 증착 후 진공열처리를 통하여 층간 금속 층이 ITO박막의 메탄올 검출 민감도에 미치는 영향을 분석하였다. 모든 박막센서의 두께는 100 nm로 동일하게 ITO 50 nm/metal 10 nm/ITO 40 nm로 제작되었고 메탄올 농도는 100에서 1,000 ppm까지 달리하였다. ITO/Au/ITO 박막센서가 가장 높은 민감도를 보임으로써 ITO/Au/ITO 다층박막이 기존의 ITO메탄올 센서를 대체할 수 있는 센서임을 확인하였다.

마그네트론 스퍼터링법으로 제조된 ZTZ 박막의 구조적 전기광학적 특성에 미치는 전자빔 조사의 영향 (Influence of electron irradiation on the structural and optoelectronics properties of ZTZ thin films prepared by magnetron sputtering)

  • 차병철;장진규;최진영;이인식;김대욱;김유성;김대일
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.363-367
    • /
    • 2022
  • Transparent ZnO/Ti/ZnO (ZTZ) tri-layered films were prepared with radio frequency (RF) and direct current (DC) magnetron sputtering on the glass substrate. The thickness of the ZnO and Ti films was kept at 50 and 10 nm to consider the effect of the electron irradiation on the crystallization and optoelectrical properties of the films. From the XRD spectra, post-depostion electron irradiated films showed the characteristic peaks of ZnO(002) and Ti(200), respectively. the observed grain size of the ZnO(002) and Ti(200) enlarged up to 18.27 and 12.16 nm at an irradiation condition of 750 eV. In the figure of merit which means an optoelectrical performance of the films, as deposited films show a figure of merit of 2.0×10-5 𝛺-1, while the films electron irradiated at 750 eV show a higher figure of merit of 5.7×10-5 𝛺-1.

전자빔 조사에 따른 ZnO/Cu/ZnO 박막의 전기광학적 특성 및 전기자동차용 투명 발열체 특성 (Effect of Electron Beam Irradiation on the Opto-Electrical and Transparent Heater Property of ZnO/Cu/ZnO Thin Films for the Electric Vehicle Application)

  • 이연학;박민성;김대일
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.497-501
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin films were deposited at room temperature on a glass substrate using direct current (DC) and radio frequency (RF, 13.56 MHz) magnetron sputtering and then the effect of post-deposition electron irradiation on the structural, optical, electrical and transparent heater properties of the films were considered. ZCZ films that were electron beam irradiated at 500 eV showed an increase in the grain sizes of their ZnO(102) and (201) planes to 15.17 nm and 11.51 nm, respectively, from grain sizes of 13.50 nm and 10.60 nm observed in the as deposited films. In addition, the film's optical and electrical properties also depended on the electron irradiation energies. The highest opto-electrical performance was observed in films electron irradiated at 500 eV. In a heat radiation test, when a bias voltage of 18 V was applied to the film that had been electron irradiated at 500 eV, its steady state temperature was about 90.5 ℃. In a repetition test, it reached the steady state temperature within 60 s at all bias voltages.

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

The Influence of Ag Thickness on the Electrical and Optical Properties of ZnO/Ag/SnO2 Tri-layer Films

  • Park, Yun-Je;Choi, Jin-Young;Choe, Su-Hyeon;Kim, Yu-Sung;Cha, Byung-Chul;Kim, Daeil
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.145-149
    • /
    • 2019
  • Transparent and conductive ZnO/Ag/SnO2 (ZAS) tri-layer films were deposited onto glass substrates at room temperature by using radio frequency (RF) and direct current (DC) magnetron sputtering. The thickness values of the ZnO and $SnO_2$ thin films were kept constant at 50 nm and the value for Ag interlayer was varied as 5, 10, 15, and 20 nm. In the XRD pattern the diffraction peaks were identified as the (002) and (103) planes of ZnO, while the (111), (200), (220), and (311) planes could be attributed to the Ag interlayer. The optical transmittance and electrical resistivity were dependent on the thickness of the Ag interlayer. The ZAS films with a 10 nm thick Ag interlayer exhibited a higher figure of merit than the other ZAS films prepared in this study. From the observed results, a ZAS film with a 10 nm thick Ag interlayer was believed to be an alternative transparent electrode candidate for various opto-electrical devices.