Browse > Article

Deposition of Solar Selective Coatings for High Temperature Applications  

Lee, Kil-Dong (Dept. of Electrophysics, Kyonggi University)
Publication Information
Journal of the Korean Solar Energy Society / v.28, no.1, 2008 , pp. 33-42 More about this Journal
Abstract
Zr-O ($Zr-ZrO_2$) cermets solar selective coatings with a double cermets layer film structure were prepared using a DC (direct current) magnetron sputtering method. The typical film structure from surface to bottom substrate were an $Al_2O_3$ anti-reflection layer on a double Zr-O cermets layer on an Al metal infrared reflection layer. Optical properties of optimized Zr-O cermets solar selective coating had an absorptance of ${\alpha}\;=\;0.95$ and thermal omittance of ${\epsilon}\;=\;0.10\;(100^{\circ}C)$. The absorbing layer of Zr-O cermets coatings on glass and silicon substrate was identified as being amorphous by using XRD. AFM showed that ZF-O cermets layers were very smooth and their surface roughness were approximately $0.1{\sim}0.2 nm$. The chemical analysis of the cermets coatings were determined by using XPS. Chemical shift of photoelectron binding energy was occurred due to the change of Zr-O cermets coating structure deposited with increase in oxygen flow rate. The result of thermal stability test showed that the Zr-O cermets solar selective coating was stable for use at temperature below $350^{\circ}C$.
Keywords
Zr-O cermets solar selective coatings; magnetron sputtering; amorphous; thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. G. Graighead, R. Bartynski, R. A. Buhrman, L. Wojcik and A. J. Sievers, Sol. Energy Mater. 1, 105 (1979)
2 G. A. Niklasson and C. G. Granqvist, J. Mater. Sci. Appl. Phys. 18, 3475 (1983)
3 J. Lafai, S. Berthier, C. Sella and T. K Vien, Vacuum 36, 125 (1986)
4 L. K. Thomas and C. Tang, Sol. Energy Mater. 18, 117 (1989)
5 G. Zajac, G. B. Smith and A. Ignatiev, J. Appl. Phys. 51, 5544 (1980)
6 D. R. McKenzie, Appl. Phys. Lett. 34, 25 (1979)
7 H. G. Graighead and R. A. Buhrman, J. Vac. Sci. Technol. 15, 269 (1978)
8 D. M. Trotter and A. J. Sievers, Appl. Opt. 19, 711 (1980)
9 W. Pekruhn, L. K. Thomas, I. Broser, A. Schroder and U. Wenning, Sol Energy Mater. 13, 199 (1986)
10 J. Blain, C. Le. Bel, R. G.Saint-Jacques and F. Rheault, J. Appl. Phys. 58, 490 (1985)
11 F. Garnich and E. Sailer, Sol Energy Mater. 20, 81 (1990)
12 Q. C. Zhang, Sol Energy Mater. and Sol Cells 62, 63 (2000)
13 T. S. Sathiaraj, R. Thangaraj and O. P. Agnihotri, Sol Energy Mater. 18, 343 (1989)
14 K. D. Lee, W. C. Jung and J. K. Kim, Sol. Energy Mater. Sol. Cells 62, 63 (2000)
15 G. A. Niklasson and C. G. Granqvist, Appl. Phys. Lett. 41, 773 (1982)
16 J. C. Fan and P. M. Zavracky, Appl. Phys. Letter. 29, 478 (1977)
17 J. A. Thornton and J. L. Lamb, Sol. Energy Mater. 9, 415 (1984)
18 C. M. Lampert, Theory and Modeling of Solar Materials, in Solar Collectors, Energy Storage, and Materials, ed. by F. D. Winter(The MIT Press Massachusetts), p. 904
19 G. A. Nyberg and R. A. Buhrman, Appl. Phys. Lett. 40, 129 (1982)
20 G. A. Niklasson and C. G. Granqvist, Appl. Phys. 55, 3382 (1984)   DOI   ScienceOn
21 J. A. Duffie and W.A. Beckman, Solar Engineering of Thermal Processes, 2nd ed (Wiley-Interscience, New York, 1991)