• 제목/요약/키워드: Direct Numerical Simulation

검색결과 455건 처리시간 0.024초

부분공간법에 의한 페루프 시스템의 동정 (Identification of Closed Loop System by Subspace Method)

  • 이동철;배종일;홍순일;김종경;조봉관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2143-2145
    • /
    • 2003
  • In the linear system identification using the discrete time constant coefficients, there is a subspace method based on 4SID recently much suggested instead of the parametric method like as the maximum likelihood method. The subspace method is not related with the impulse response and difference equation in its input-output equation, but with the system matrix of the direct state space model from the input-output data. The subspace method is a very useful tool to adopt in the multivariable system identification, but it has a shortage unable to adopt in the closed-loop system identification. In this paper, we are suggested the methods to get rid of the shortage of the subspace method in the closed-loop system identification. The subspace method is used in the estimate of the output prediction values from the estimating of the state space vector. And we have compared the results with the outputs of the recursive least square method in the numerical simulation.

  • PDF

다화학종 GH 방정식의 정확성 향상을 위한 벽면 경계조건 연구 및 GH 방정식의 엔트로피 특성 고찰 (The Slip-Wall Boundary Conditions Effects and the Entropy Characteristics of the Multi-Species GH Solver)

  • 안재완;김종암
    • 한국항공우주학회지
    • /
    • 제37권10호
    • /
    • pp.947-954
    • /
    • 2009
  • 본 연구에서는 다화학종 희박유동의 해석을 위해, GH(Generalized Hydrodynamic) 방정식을 기반으로 한 축대칭 유동 해석이 가능한 다화학종 GH 수치해석 기법을 전산유체역학 수치해석자로서 개발하였다. 최초로 구현된 다화학종 GH 수치기법은 축대칭 형상의 물체 주위의 극초음속 희박유동을 대상으로 하여, DSMC(Direct Simulation Monte Carlo) 및 N-S(Navier-Stokes) 방정식의 결과와의 비교를 통해 정확도를 검증하고자 하였다. GH 해석자의 정확도 향상을 위해 고체 벽면에서의 여러 가지 slip-wall 경계조건을 적용하고 각각의 결과를 비교하였다. 또한, 높은 Knudsen 수의 1차원 수직 충격파 구조 문제를 통해 GH 방정식의 엔트로피 특성 및 정확성을 고찰하였다.

Propagation Dynamics of a Finite-energy Airy Beam with Sinusoidal Phase in Optical Lattice

  • Huang, Xiaoyuan;Chen, Manna;Zhang, Geng;Liu, Ye;Wang, Hongcheng
    • Current Optics and Photonics
    • /
    • 제4권4호
    • /
    • pp.267-272
    • /
    • 2020
  • The propagation of a truncated Airy beam with spatial phase modulation (SPM) is investigated in Kerr nonlinearity with an optical lattice. Before the truncated Airy beam enters the optical lattice, a sinusoidal phase is introduced on the wave-front of the beam. The effect of the spatial phase modulation and optical lattice on propagation behavior is analyzed by direct numerical simulation. It is found that the propagation direction of a truncated Airy beam can be effectively controlled by adjusting the values of phase shift. The effects of optical amplitude, truncation factor, spatial modulation frequency, lattice period and lattice depth on the propagation are discussed in detail. By choosing a high modulation depth, the finite-energy Airy beam can be deflected with a large deflection angle in an optical lattice.

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

Modal parameter identification of civil structures using symplectic geometry mode decomposition

  • Feng Hu;Lunhai Zhi;Zhixiang Hu;Bo Chen
    • Wind and Structures
    • /
    • 제36권1호
    • /
    • pp.61-73
    • /
    • 2023
  • In this article, a novel structural modal parameters identification methodology is developed to determine the natural frequencies and damping ratios of civil structures based on the symplectic geometry mode decomposition (SGMD) approach. The SGMD approach is a new decomposition algorithm that can decompose the complex response signals with better decomposition performance and robustness. The novel method firstly decomposes the measured structural vibration response signals into individual mode components using the SGMD approach. The natural excitation technique (NExT) method is then used to obtain the free vibration response of each individual mode component. Finally, modal natural frequencies and damping ratios are identified using the direct interpolating (DI) method and a curve fitting function. The effectiveness of the proposed method is demonstrated based on numerical simulation and field measurement. The structural modal parameters are identified utilizing the simulated non-stationary responses of a frame structure and the field measured non-stationary responses of a supertall building during a typhoon. The results demonstrate that the developed method can identify the natural frequencies and damping ratios of civil structures efficiently and accurately.

2차원 사각주 주위 유동의 플라즈마 능동제어에 대한 연구 (Active control of flow around a 2D square cylinder using plasma actuators)

  • 파라스코비아 콜레소바;무스타파 요시프;임희창
    • 한국가시화정보학회지
    • /
    • 제22권2호
    • /
    • pp.44-54
    • /
    • 2024
  • This study investigates the effectiveness of using a plasma actuator for active control of turbulent flow around a finite square cylinder. The primary objective is to analyze the impact of plasma actuators on flow separation and wake region characteristics, which are critical for reducing drag and suppressing vortex-induced vibrations. Direct Numerical Simulation (DNS) was employed to explore the flow dynamics at various operational parameters, including different actuation frequencies and voltages. The proposed methodology employs a neural network trained using the Proximal Policy Optimization (PPO) algorithm to determine optimal control policies for plasma actuators. This network is integrated with a computational fluid dynamics (CFD) solver for real-time control. Results indicate that this deep reinforcement learning (DRL)-based strategy outperforms existing methods in controlling flow, demonstrating robustness and adaptability across various flow conditions, which highlights its potential for practical applications.

LES를 이용한 직사각형 개수로 난류흐름의 조직구조 분석 (Analysis of Coherent Structure of Turbulent Flows in the Rectangular Open-Channel Using LES)

  • 반채웅;최성욱
    • 대한토목학회논문집
    • /
    • 제34권5호
    • /
    • pp.1435-1442
    • /
    • 2014
  • 본 연구에서는 OpenFOAM에서 제공하는 소스코드를 이용하여 매끄러운 하상의 직사각형 개수로 흐름에 대해 수치모의를 수행하였다. 난류 해석을 위해 LES를 수행하였는데, 비등방성 잔여 응력항을 모델링하기 위해서 Germano et al. (1991)이 제시한 Dynamic Subgrid-scale 모형을 이용하였다. 조직구조를 분석하기 위하여 Lu and Willmarth (1973)가 제시한 uw 사분면기법을 이용하여 순간레이놀즈 응력이 레이놀즈 응력에 미치는 영향을 기여율과 시간비로 나누어 분석하였다. LES 모의 결과를 토대로 기존 실험 및 DNS 모의 결과와 비교하고 분석하였다. 매끈한 하상을 가진 개수로 흐름에서 완충층 이후의 구간에서 분출현상이 쓸기현상에 비해 레이놀즈 응력의 양의 생성에 기여하는 바가 크지만, 분출현상에 비해 쓸기현상의 발생빈도가 큰 것으로 확인되었다.

내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발 (Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage)

  • 두정훈;윤현식;하만영
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.427-434
    • /
    • 2009
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The numerical simulations for five different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermoaerodynamic performance for five different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, volume and area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 %, and the value of maximum ratio of Nusselt number augmentation is 7.05% when the riblet angle is $60^{\circ}$. The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum volume and area goodness factors are obtained when the riblet angle is $60^{\circ}$.

Mitigation of Ammonia Dispersion with Mesh Barrier under Various Atmospheric Stability Conditions

  • Gerdroodbary, M. Barzegar;Mokhtari, Mojtaba;Bishehsari, Shervin;Fallah, Keivan
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권3호
    • /
    • pp.125-136
    • /
    • 2016
  • In this study, the effects of the mesh barrier on the free dispersion of ammonia were numerically investigated under different atmospheric conditions. This study presents the detail and flow feature of the dispersion of ammonia through the mesh barrier on various free stream conditions to decline and limit the toxic danger of the ammonia. It is assumed that the dispersion of the ammonia occurred through the leakage in the pipeline. Parametric studies were conducted on the performance of the mesh barrier by using the Reynolds-averaged Navier-Stokes equations with realizable k-${\varepsilon}$ turbulence model. Numerical simulations of ammonia dispersion in the presence of mesh barrier revealed significant results in a fully turbulent free stream condition. The results clearly show that the flow behavior was found to be a direct result of mesh size and ammonia dispersion is highly influenced by these changes in flow patterns in downstream. In fact, the flow regime becomes laminar as flow passes through mesh barrier. According to the results, the mesh barrier decreased the maximum concentration of the ammonia gas and limited the risk zone (more than 500 ppm) lower than 2 m height. Furthermore, a significant reduction occurs in the slope of the upper boundary of $NH_3$ risk zone distribution at downstream when a mesh barrier is presented. Thus, this device highly restricts the leak distribution of ammonia in the industrial plan.

A study on detailing gusset plate and bracing members in concentrically braced frame structures

  • Hassan, M.S.;Salawdeh, S.;Hunt, A.;Broderick, B.M.;Goggins, J.
    • Advances in Computational Design
    • /
    • 제3권3호
    • /
    • pp.233-267
    • /
    • 2018
  • Conventional seismic design of concentrically braced frame (CBF) structures suggests that the gusset plate connecting a steel brace to beams and/or columns should be designed as non-dissipative in earthquakes, while the steel brace members should be designed as dissipative elements. These design intentions lead to thicker and larger gusset plates in design on one hand and a potentially under-rated contribution of gusset plates in design, on the other hand. In contrast, research has shown that compact and thinner gusset plates designed in accordance with the elliptical clearance method rather than the conventional standard linear clearance method can enhance system ductility and energy dissipation capacity in concentrically braced steel frames. In order to assess the two design methods, six cyclic push-over tests on full scale models of concentric braced steel frame structures were conducted. Furthermore, a 3D finite element (FE) shell model, incorporating state-of-the-art tools and techniques in numerical simulation, was developed that successfully replicates the response of gusset plate and bracing members under fully reversed cyclic axial loading. Direct measurements from strain gauges applied to the physical models were used primarily to validate FE models, while comparisons of hysteresis load-displacement loops from physical and numerical models were used to highlight the overall performance of the FE models. The study shows the two design methods attain structural response as per the design intentions; however, the elliptical clearance method has a superiority over the standard linear method as a fact of improving detailing of the gusset plates, enhancing resisting capacity and improving deformability of a CBF structure. Considerations were proposed for improvement of guidelines for detailing gusset plates and bracing members in CBF structures.