DOI QR코드

DOI QR Code

The Slip-Wall Boundary Conditions Effects and the Entropy Characteristics of the Multi-Species GH Solver

다화학종 GH 방정식의 정확성 향상을 위한 벽면 경계조건 연구 및 GH 방정식의 엔트로피 특성 고찰

  • 안재완 (서울대학교 기계항공공학부 대학원) ;
  • 김종암 (서울대학교 기계항공공학부)
  • Published : 2009.10.01

Abstract

Starting from the Eu's GH(Generalized Hydrodynamic) theory, the multi-species GH numerical solver is developed in this research and its computatyional behaviors are examined for the hypersonic rarefied flow over an axisymmetric body. To improve the accuracy of the developed multi-species GH solver, various slip-wall boundary conditions are tested and the computed results are compared. Additionally, in order to validate the entropy characteristics of the GH equation, the entropy production and entropy generation rates of the GH equation are investigated in the 1-dimensional normal shock structure test at a high Knudsen number.

본 연구에서는 다화학종 희박유동의 해석을 위해, GH(Generalized Hydrodynamic) 방정식을 기반으로 한 축대칭 유동 해석이 가능한 다화학종 GH 수치해석 기법을 전산유체역학 수치해석자로서 개발하였다. 최초로 구현된 다화학종 GH 수치기법은 축대칭 형상의 물체 주위의 극초음속 희박유동을 대상으로 하여, DSMC(Direct Simulation Monte Carlo) 및 N-S(Navier-Stokes) 방정식의 결과와의 비교를 통해 정확도를 검증하고자 하였다. GH 해석자의 정확도 향상을 위해 고체 벽면에서의 여러 가지 slip-wall 경계조건을 적용하고 각각의 결과를 비교하였다. 또한, 높은 Knudsen 수의 1차원 수직 충격파 구조 문제를 통해 GH 방정식의 엔트로피 특성 및 정확성을 고찰하였다.

Keywords

References

  1. Jae Wan Ahn and Chongam Kim, "An Axisymmetric Computational Model of Generalized Hydrodynamic Theory for Rarefied Multi-species Gas Flows", J. Comp. Phys., 228(11), 2009, pp. 4088~4117. https://doi.org/10.1016/j.jcp.2009.02.026
  2. R. S. Myong, "A Computational Method for Eu's Generalized Hydrodynamic Equations of Rarefied and Microscale Gas Dynamics", J. Comp. Phys., 168, 2001, pp. 47-72. https://doi.org/10.1006/jcph.2000.6678
  3. R. S. Myong, "A Generalized Hydrodynamic Computational Model for Rarefied and Microscale Diatomic Gas Flows", J. Comp. Phys., 195, 2004, pp.655-676. https://doi.org/10.1016/j.jcp.2003.10.015
  4. R. N. Gupta, J. M. Yos, R. A. Thompson and K. P. Lee, "A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30,000K", NASA RP-1232, 1990.
  5. B. C. Eu, "Kinetic Theory and Irreversible Thermo-dynamics", Wiley, New York, 1992.
  6. B. C. Eu, "Transport Coefficients of Fluids", Springer, Berlin, 2006.
  7. R. S. Myong, "A Generalized Hydrodynamic Computational Model for Rarefied and Microscale Diatomic Gas Flows", J. Comput. Phys. 195, 2004, pp. 655-676. https://doi.org/10.1016/j.jcp.2003.10.015
  8. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, "Numerical Recipe in Fortran 77", Cambridge Univ. Press, London, 1993.
  9. R. S. Myong, J. M. Reese, R. W. Barber and D. R. Emerson, "Velocity Slip in Microscale Cylindrical Couette Flow: The Langmuir Model", Phys. of Fluids, 17-087105, 2005. https://doi.org/10.1063/1.2003154
  10. A. W. Adamson, "Physical Chemistry of Surfaces", JohnWiley & Sons, New York, 1982.
  11. A. Beskok and G. E. Karniadakis, "Simulation of Heat and Momentum Transfer in Complex Microgeometries", J. Thermophys. and Heat Transfer, 8(4), 1994, pp. 647-655. https://doi.org/10.2514/3.594
  12. G. E. Karniadakis and A. Beskok, "Micro Flows", Springer, New York, 2002.
  13. J. N. Moss and G. A. Bird, "Direct Simulation of Transitional Flow for Hypersonic Reentry Conditions", 22nd AIAA Aerospace Science Meeting, Reno, NV, 1984, paper AIAA 84-0223. https://doi.org/10.2514/2.6909
  14. G. F. Naterer and J. A. Camberos, "Entropy and the Second Law Fluid Flow and Heat Transfer Simulation", J. Thermophys. and Heat Transfer, 17(3), 2003, pp. 360-371. https://doi.org/10.2514/2.6777
  15. S. Chigullapalli, A. Venkattraman, A. A. Alexeenko, and M. S. Ivanov, "Non-Equilibrium Flow Modeling Using High-Order Schemes for the Boltzmann Model Equations", 40th Thermophyics Conference, Seattle, Washington, 2008, paper AIAA 2008-3929.