Browse > Article
http://dx.doi.org/10.5139/JKSAS.2009.37.10.947

The Slip-Wall Boundary Conditions Effects and the Entropy Characteristics of the Multi-Species GH Solver  

Ahn, Jae-Wan (서울대학교 기계항공공학부 대학원)
Kim, Chong-Am (서울대학교 기계항공공학부)
Publication Information
Journal of the Korean Society for Aeronautical & Space Sciences / v.37, no.10, 2009 , pp. 947-954 More about this Journal
Abstract
Starting from the Eu's GH(Generalized Hydrodynamic) theory, the multi-species GH numerical solver is developed in this research and its computatyional behaviors are examined for the hypersonic rarefied flow over an axisymmetric body. To improve the accuracy of the developed multi-species GH solver, various slip-wall boundary conditions are tested and the computed results are compared. Additionally, in order to validate the entropy characteristics of the GH equation, the entropy production and entropy generation rates of the GH equation are investigated in the 1-dimensional normal shock structure test at a high Knudsen number.
Keywords
Multi-species GH equation; Hypersonic rarefied flow; Slip-wall boundary condtion; Entropy production; Langmuir boundary condition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, "Numerical Recipe in Fortran 77", Cambridge Univ. Press, London, 1993.
2 R. S. Myong, J. M. Reese, R. W. Barber and D. R. Emerson, "Velocity Slip in Microscale Cylindrical Couette Flow: The Langmuir Model", Phys. of Fluids, 17-087105, 2005.   DOI
3 A. W. Adamson, "Physical Chemistry of Surfaces", JohnWiley & Sons, New York, 1982.
4 A. Beskok and G. E. Karniadakis, "Simulation of Heat and Momentum Transfer in Complex Microgeometries", J. Thermophys. and Heat Transfer, 8(4), 1994, pp. 647-655.   DOI   ScienceOn
5 G. E. Karniadakis and A. Beskok, "Micro Flows", Springer, New York, 2002.
6 J. N. Moss and G. A. Bird, "Direct Simulation of Transitional Flow for Hypersonic Reentry Conditions", 22nd AIAA Aerospace Science Meeting, Reno, NV, 1984, paper AIAA 84-0223.   DOI   ScienceOn
7 G. F. Naterer and J. A. Camberos, "Entropy and the Second Law Fluid Flow and Heat Transfer Simulation", J. Thermophys. and Heat Transfer, 17(3), 2003, pp. 360-371.   DOI   ScienceOn
8 S. Chigullapalli, A. Venkattraman, A. A. Alexeenko, and M. S. Ivanov, "Non-Equilibrium Flow Modeling Using High-Order Schemes for the Boltzmann Model Equations", 40th Thermophyics Conference, Seattle, Washington, 2008, paper AIAA 2008-3929.
9 B. C. Eu, "Transport Coefficients of Fluids", Springer, Berlin, 2006.
10 R. S. Myong, "A Generalized Hydrodynamic Computational Model for Rarefied and Microscale Diatomic Gas Flows", J. Comput. Phys. 195, 2004, pp. 655-676.   DOI   ScienceOn
11 Jae Wan Ahn and Chongam Kim, "An Axisymmetric Computational Model of Generalized Hydrodynamic Theory for Rarefied Multi-species Gas Flows", J. Comp. Phys., 228(11), 2009, pp. 4088~4117.   DOI   ScienceOn
12 R. S. Myong, "A Computational Method for Eu's Generalized Hydrodynamic Equations of Rarefied and Microscale Gas Dynamics", J. Comp. Phys., 168, 2001, pp. 47-72.   DOI   ScienceOn
13 R. S. Myong, "A Generalized Hydrodynamic Computational Model for Rarefied and Microscale Diatomic Gas Flows", J. Comp. Phys., 195, 2004, pp.655-676.   DOI   ScienceOn
14 R. N. Gupta, J. M. Yos, R. A. Thompson and K. P. Lee, "A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30,000K", NASA RP-1232, 1990.
15 B. C. Eu, "Kinetic Theory and Irreversible Thermo-dynamics", Wiley, New York, 1992.