• 제목/요약/키워드: Digital state feedback

검색결과 96건 처리시간 0.024초

관측기 기반 디지털 퍼지 제어기 (Observer-Based Digital Fuzzy Controller)

  • Cha, Dae-Bum;Joo, Young-Hoon;Lee, Ho-Jae;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.199-202
    • /
    • 2002
  • This parer concerns a design methodology of the observer-based output-feedback digital controller for Takagj-Sugeno (TS) fuzzy systems using intelligent digital redesign (IDR). The term of IDR involves converting an analog fuzzy-mode-based controller into an equivalent digital one in the sense of state-matching. The considered IDR problem is viewed as convex minimization problems of the norm distances between linear operators to be matched. The stability condition is easily embedded and the separations principle is explicitly shown.

  • PDF

Design of T-S Fuzzy Model based Adaptive Fuzzy Observer and Controller

  • Ahn, Chang-Hwan
    • 조명전기설비학회논문지
    • /
    • 제23권11호
    • /
    • pp.9-21
    • /
    • 2009
  • This paper proposes the alternative observer and controller design scheme based on T-S fuzzy model. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given unknown nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. The proposed controller is based on a simple output feedback method. Therefore, it solves the singularity problem, without any additional algorithm, which occurs in the inverse dynamics based on the feedback linearization method. The adaptive fuzzy scheme estimates the parameters and the feedback gain comprising the fuzzy model representing the observation system. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observer and controller, they are applied to an inverted pendulum on a cart.

Position control of D.C. motor under the disturbances by new sliding mode control

  • Lee, Ju-Jang;Kim, Jong-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.843-847
    • /
    • 1988
  • A new control method for position control of D.C. servo motor based on the variable structure control is presented. The desired trajectory satisfying the given performance requirement is used as the sliding curve. And the control input forcing the system to follow the desired model system is applied. As a result the method is robust to disturbance. The performance of the proposed controller is compared with that of the conventional state feedback controller through digital computer simulation.

  • PDF

큰 외란이 존재하는 시스템에 있어서의 직류 전동기의 최적제어 (The optimal control of DC motor under large disturbance in the system)

  • 홍찬호;김종준;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.575-577
    • /
    • 1987
  • A new control method for DC motor position control with variable structure is presented. The proposed method uses the desired trajectory with optimal input satisfying the given performance requirement as the switching curve and is insensitive to parameter variation and disturbance. To show the validity of the proposed method, digital computer simulation is performed. And the result is compared with that of the optimal state feedback.

  • PDF

마이크로프로세서에 의한 전류형 인버어터 - 유도전동기의 PID제어시스템에 대한 해석 (Analysis of PID Control for Microprocessor-based Current Source Inverter-Induction Motor System)

  • 박민호;전태원
    • 대한전기학회논문지
    • /
    • 제34권7호
    • /
    • pp.283-288
    • /
    • 1985
  • This paper is concerned with the analysis of microprocessor-based PID control for the current source inverter-induction motor derive system. A linearized dynamic model of the motor is derived and is converted into the discrete-time model. With the equation, the overall system including the feedback loops is formulated into a single discrete-time state equation. The stability regions are determined at various values of controller gains. The transient responses of the motor speed are simulated by digital computer and are verified by laboratory experiments.

  • PDF

High-Speed Access over Copper: Rate Optimization and Signal Construction

  • Enteshari, Ali;Fadlullah, Jarir M.;Kavehrad, Mohsen
    • ETRI Journal
    • /
    • 제31권5호
    • /
    • pp.489-499
    • /
    • 2009
  • This paper focuses on assessment and design of transmission systems for distribution of digital signals over standard Category-7A copper cables at speeds beyond 10 Gbps. The main contribution of this paper is on the technical feasibility and system design for data rates of 40 Gbps and 100 Gbps over copper. Based on capacity analysis and rate optimization algorithms, system parameters are obtained and the design implementation trade-offs are discussed. Our simulation results confirm that with the aid of a decision-feedback equalizer and powerful coding techniques, namely, TCM or LDPC code, 40 Gbps transmission is feasible over 50 m of CAT-7A copper cable. These results also indicate that 100 Gbps transmission can be achieved over 15 m cables.

통신 네트워크에서 상태 추정에 의한 군집병합의 원격제어 (Vehicle Platooning Remote Control via State Estimation in a Communication Network)

  • 황태현;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.192-192
    • /
    • 2000
  • In this paper, a platoon merging is considered as a remote-controlled system with the state represented by a stochastic process. In this system, it becomes to encounter situations where a single decision maker controls a large number of subsystems, and observation and control signals are sent over a communication channel with finite capacity and significant transmission delays. Unlike classical estimation problem in which the observation is a continuous process corrupted by additive noise, there is a constraint that the observation must be coded and transmitted over a digital communication channel with finite capaci쇼. A recursive coder-estimator sequence is a state estimation scheme based on observations transmitted with finite communication capacity constraint. Using the coder-estimator sequence, the remote control station designs a feedback controller. In this paper, we introduce a stochastic model for the lead vehicle in a platoon of vehicles considering the angle between a road surface and a horizontal plane as a stochastic process. The simulation results show that the inter-vehicle distance and the deviation from the desired inter-vehicle distance are well regulated.

  • PDF

연속시간 유한정정제어기를 이용한 서보시스템 제어 (Servo System Control Using Continuous Time Deadbeat Controller)

  • 김진용;김성은;김성열;이정국;이금원;이준모
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.117-120
    • /
    • 2001
  • Deadbeat property is well established in digital control system design, But in continuous time, it can hardly realized for it's asymtotic property. But recently japanese researchers suggested serveral method for continuous time deadbeat property. They use delay elements In polynomials and established for the deadbeat condition. By solving this condition, unknown coefficients in polynomials with delay elements is obtained. In this paper, design method for optimal continuous time deadbeat servo system using 2nd order smooting elementsis studied. Continuous time deadbeat controller is consisted of serial integral compensator and local feedback one in state feedback loop. Determining method for damping rations and natural frequencies of smothing elements is described. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구 (An Experimental Study upon Modeling and Control of Coupled Engine and Generator System)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

다중 자기부상 시스템의 분산형 $H_{\infty}$ 제어 (Decentralized $H_{\infty}$ Control of Multiple Magnetic Levitation System)

  • 김종문;이상혁;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권12호
    • /
    • pp.689-697
    • /
    • 2005
  • In this paper, an application of a decentralized $H_{\infty}$ controller(DHC) to multiple controlled-permanent magnet(CMAG) magnetic levitation(Maglev) systems is presented. The designed DHC using two Riccati equations iteratively has simpler structure and needs less computational loads than conventional centralized $H_{\infty}$ controller. A target plant is a hybrid-type CMAG system with permanent magnet and coil, and its mathematical model is firstly derived to design the DHC. To implement the designed algorithm, a real Maglev vehicle system including digital controller, chopper, sensor, etc., is manufactured. To compare the performances of the DHC method with an observer-based state feedback control(OSFC), the input tracking and disturbance rejection characteristics are experimentally tested. As performance indices(PI), integral of squared error(ISE), integral of absolute error(IAE), integral of time multiplied by absolute error(ITAE) and integral of time multiplied by squared error(ITSE) are used. From the experimental results, it can be seen that the input tracking and disturbance rejection performances of the DHC are better than those of the conventional controller.