• Title/Summary/Keyword: Digital servo control algorithm

Search Result 75, Processing Time 0.022 seconds

Experimental Study on Control of Autopilot System(I) (자동운항시스템의 제어에 관한 실험적 연구)

  • Han, Bong-Ju;Bae, Gyeong-Su;Kim, Hwan-Seong;Kim, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2449-2457
    • /
    • 1996
  • This paper presents a design method for autopilot control system in course change to the specified direction based on a robust digital servo controlmelthod incorporating the concept of the annihilator polynormial. The mathematicalmodel of ship turning motion is very complex in the view of practical control because it has time varying parameters, nonlinear and dead time terms. To apply the digital servo control method based on computer control, the model is linearized at an equilibrium point and discretized with appropriate sampling time. The control algorithm was evaluated on the basis of computer simulation for a model ship and the practical experiment was carried out with an image processing method for measurement of ship position in a water tank. The results of overall experiments show that the proposed control method will be one of good way to keep a track plotted in the map.

Comparison of CDBC controller of DC Servo Motor (DC 서보모터의 CDBC 제어기 비교)

  • 김진용;유항열;김성열;이정국;이금원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2593-2596
    • /
    • 2003
  • The deadbeat properties have been well known in designing digital control systems. But recently several researchers proposed a CDBC(Continuout-time DeadBeat Controller) in continuous time. They used delay or smoothing elements from the finite Laplace Transform. A delay element is made by the exponential terms. A smoothing element is used to smooth the digital control input. And eventually the process is argumentd with smoothing elements and then well-known digital deadbeat controller is designed Sometimes samplings are done in continuous time systems and some hold devices are used to relate to digital systems. So multirate sampling may enhance the efficiency of the CDBC. A DC servo motor is chosen for implementing CDBC algorithm. Especially Outputs according to the variable input and disturbance are simulated. by use of Matlab Simulink.

  • PDF

Design of a DSP Controller and Driver for the Power-by-wire(PBW) Driving System Using BLDC Servo Motor Pump (BLDC 서보 모터 펌프를 이용하는 직동력(PBW) 구동시스템의 DSP 제어기 및 구동기 설계)

  • Joo, Jae-Hun;Sim, Dong-Seouk;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1207-1212
    • /
    • 2011
  • This paper presents a study on the DSP(Digital Signal Processor) controller for the PBW(power-by-wire) system using BLDC(Brushless Direct Current) servo motor pump. The PBW hydraulic actuator was realized with hydraulic pump driven by BLDC servo motor, hydraulic cylinder and controller. This PBW system needs speed control of servo motor for linear thrust action of hydraulic cylinder. This paper implements a servo controller with vector control algorithm and MIN-MAX PWM technique. As CPU of a controller, TMS320F2812 DSP was adopted because it has PWM waveform generator, A/D converter, SPI(Serial Peripheral Interface) port and many input/output port etc.

Servo Drives State of the Art in Industrial Applications - A Survey

  • Kennel R.;Kobs G.;Weber R.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.321-325
    • /
    • 2001
  • Servo drives with microcomputer control provide the possibility of using modem and sophisticated control algorithms. As an additional feature it is possible to implement parallel and/or redundant software and hardware structures to realise safe motion or similar security functions. Unfortunately microcomputer control also has some impact on the behaviour of servo drives. Control algorithm, cycle time, sensors and interface have to be perfectly synchronised. Special control schemes are necessary on the line side (power supply) to meet the actual requirements concerning EMC. This contribution presents experiences and results obtained from a modem digital drive system pointing out the influences of low and high accuracy position sensors and the interdependencies mentioned above.

  • PDF

Speed Control of Permanent Magnet Synchronous Motor Using Space voltage Vector PWM (공간전압벡터 PWM 기법을 이용한 영구자석형 동기전동기의 속도제)

  • 윤덕용;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1112-1120
    • /
    • 1994
  • This paper presents a servo control scheme for the surface-mounted permanent-magnet synchronous motor(SPMSM) which essentially uses vector control algorithm. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM technique. The high-speed calculation and processing for vector control is carried out by TMS320C31 digital signal processor and IGBT module. The proposed scheme is verified through digital simulations and experiments for 2.2kW SPMSM and shows good dynamic performance.

  • PDF

Development of Speed Control System for SPMSM with Direct Torque Control (직접토크 제어에 의한 SPMSM 속도제어시스템 개발)

  • Kim, Dong-Hee;Lim, Tae-Hoon;Baik, Won-Sik;Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.66-74
    • /
    • 2005
  • This paper presents an implementation of digital servo speed control system of SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) for industrial application with Direct Torque Control(DTC) using TMS320F2812 DSP. Although, the vector control scheme is adapted in many industrial servo system, but the DSP calculation ratio is increased by reference frame transformation and SVPWM of vector control. Therefore, this paper investigate the possibility of DTC scheme for industrial servo drive system instead of vector control scheme. DSP calculation ratio is compared between vector control and DTC algorithm in addition to the characteristic of speed control response. The suggested SPMSM control system shows the possibility of DTC scheme for industrial servo motor drive system instead of a vector control algorithm.

생산공장용 무궤도 무인운반차 개발

  • 한석균;김용일;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.286-290
    • /
    • 2001
  • This paper presents a full-digital low-level controller for a robotic material transfer system which has been developed for a computer-integrated manufacturing model plant. Compared to conventional analog or hybrid type controllers in current industrial environments, this controller system has some advantages such as strong noise-immunity, easy control algorithm implementation, etc The servo-controller consists of two modules, a position controller and a DC servo motor driver. The position controller operates position feedback routines by receiving position encoder data and sending control outputs to the driver. The position controller is implemented in a full-digital way using a recently introduced microcontroller. The DC servomotor driver controls speeds and torques. The driver consists of a micro-controller and insulated-gate-bipolar-transistors (IGBT). The micro-controller provides control signals, and the IGBT's amplifies the control signals and sends them to the motor.

A Study on the Digital Control of Single Phase Induction Motor Driven by the Full Bridge Resonant Inverter(2) (전브리지 공진형 인버터에 의한 단상 유도전동기의 디지탈 제어에 관한 연구(2))

  • 노영오;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.86-98
    • /
    • 1993
  • The application of A.C. motor for servo system is rapidly increased according to the recent advance of power electronics and digital control techniques. The induction motor which has a simple structure and needs less maintenance has become to be used widely in the industrial field for the speed and position control recently. In this paper, the full-bridge resonant inverter is applied to the speed control of single phase inducting motor. The digital PID control algorithm is used and the control parameter is determined by the Zigler-Nichols transient response method. The speed control is carried out by the one chip micro-processor(intel EV 8097BH) and control program is developed by the assembly language. By the experimental result, it is confirmed that the speed of single phase induction motor driven by full bridge series inverter can be smoothly controlled by a digital PID controller.

  • PDF

Speed Control of Permanent Magnet Synchronous Motor Using PI Auto-tuning Method (자동동조 Pl 기법을 적용한 영구자석형 동기전동기의 속도 제어)

  • 전인효
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.231-239
    • /
    • 1998
  • In this paper, we designed a current controlling servo system for speed control of a PMSM. In existing auto-tuning methods for PI controller parameters, the output response is delayed and the overshoot is generated. By solving these existing problems in this paper, a new PI auto-tuning method is applied to the speed controller for fast-response and reduced overshoot. PMSM servo systems offer a great advantage in unmanned factories where a great number of servo motors are employed, because of its easy maintenance characteristics and controllability. The implemented servo system is composed of absolute position detecting circuits of a rotor, a new auto-tuning PI control algorithm, a speed controller by using DSP, and power driving section. The proposed servo system is verified for it's practical availability by considering experimental results.

  • PDF

Design and Implementation of Parabolic Speed Pattern Generation Pulse Motor Control Chip (포물선 가감속 패턴을 가지는 정밀 펄스 모터 콘트롤러 칩의 설계 및 제작)

  • Won, Jong-Baek;Choi, Sung-Hyuk;Kim, Jong-Eun;Park, Jone-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.284-287
    • /
    • 2001
  • In this paper, we designed and implemented a precise pulse motor control chip that generates the parabolic speed pattern. This chip can control step motor[1], DC servo[2] and AC servo motors at high speed and precisely. It can reduce the mechanical vibration to the minimum at the change point of a degree of acceleration. Because the parabolic speed pattern has the continuous acceleration change. In this paper, we present the pulse generation algorithm and the parabolic pattern speed generation. We verify these algorithm using visual C++. We designed this chip with VHDL(Very High Speed Integrated Circuit Hardware Description Language) and executed a logic simulation and synthesis using Synopsys synthesis tool. We executed the pre-layout simulation and post-layout simulation with Verilog-XL simulation tool. This chip was produced with 100 pins, PQFP package by 0.35 um CMOS process and implemented by completely digital logic. We developed the hardware test board and test program using visual C++. We verify the performance of this chip by driving the servo motor and the function by GUI(Graphic User Interface) environment.

  • PDF